Research Progress of Solid Phase Transformations in Steel Induced by Strong Magnetic Fields
-
摘要: 在金属固态相变过程中,施加强磁场调控微观结构以改善其力学性能,该处理方法因极具工程应用潜力而备受关注。本研究基于已有报道,阐述了强磁场对钢中固态相变的影响机制,并详细概述了强磁场对钢中马氏体、贝氏体、珠光体相变和碳化物析出的影响规律,最后展望了通过强磁场处理改善钢材力学性能的发展前景,以期为新型高性能钢材的研制和革新提供更多思路。Abstract: The use of strong magnetic fields to regulate microstructures during solid phase transformations in metals has gained significant attention owing to its considerable potential for enhancing mechanical properties of materials. In this paper, the influencing mechanisms of strong magnetic fields on solid phase transformations in steel are introduced, the influences of strong magnetic fields on transformations of martensite, bainite, pearlyte and carbide precipitation are reviewed, and the insights and recommendations for future research directions concerning the application of strong magnetic fields in steel processing are put up. These contributions are intended to foster new advancements and innovations in the development of novel high-performance steel.
-
Keywords:
- strong magnetic field /
- steel /
- solid phase transformation /
- magnetic free energy
-
-
[1] RODRIGUES P C M, PERELOMA E V, SANTOS D B. Mechanical properities of an HSLA bainitic steel subjected to controlled rolling with accelerated cooling[J]. Materials Science and Engineering: A, 2000, 283(1-2): 136-143.
[2] YOOZBASHI M N, YAZDANI S, WANG T S. Design of a new nanostructured, high-Si bainitic steel with lower cost production[J]. Materials & Design, 2011, 32(6): 3248-3253.
[3] WATANABE K, MOTOKAWA M. Materials science in static high magnetic fields[M]. Berlin: Springer, 2002: 3-10.
[4] ZENER C. Impact of magnetism upon metallurgy[J]. JOM, 1955, 7(5): 619-630.
[5] WU Y, LI H H, ZHANG Z W, et al. Effect of high magnetic field on carbide precipitation in W6Mo5Cr4V3 high-speed steel during low-temperature tempering[J]. International Journal of Materials Research, 2016, 107(4): 356-361.
[6] HOU T P, WU K M. Alloy carbide precipitation in tempered 2.25Cr-Mo steel under high magnetic field[J]. Acta Materialia, 2013, 61(6): 2016-2024.
[7] LIU X J, LU Y, FANG Y M, et al. Effects of external magnetic field on the diffusion coefficient and kinetics of phase transformation in pure Fe and Fe-C alloys[J]. Calphad, 2011, 35(1): 66-71.
[8] XIA Z X, ZHANG C, LAN H, et al. Effect of magnetic field on interfacial energy and precipitation behavior of carbides in reduced activation steels[J]. Materials Letters, 2011, 65(6): 937-939.
[9] ZHAO M, HU J H, ZOU J B, et al. Characteristics of a magnetic fluid under an orthogonal alternating magnetic field[J]. Journal of Magnetism and Magnetic Materials, 2016, 409: 66-70.
[10] 张东, 侯廷平,郑一航, 等. 强磁场下钢中析出相演变规律研究进展[J]. 铸造技术, 2022, 43(8): 615-624. [11] 侯廷平. 强磁场条件下耐热钢中合金碳化物的析出行为[D]. 武汉: 武汉科技大学, 2012. [12] LI P W, CHEN W M, LIU W, et al. Thermodynamic phase formation of morphology and size controlled Ni nanochains by temperature and magnetic field[J]. The Journal of Physical Chemistry C, 2010, 114(17): 7721-7726.
[13] WATANABE T, TSUREKAWA S, ZHAO X, et al. A new challenge: grain boundary engineering for advanced materials by magnetic field application[J]. Journal of Materials Science, 2006, 41(23): 7747-7759.
[14] 权薛玲, 侯廷平, 张东, 等. 强磁场对Fe-0.1C-2W钢回火过程微观组织的影响[J]. 武汉科技大学学报, 2022, 45(6): 401-408. [15] 镇锦煌, 侯廷平, 刘杨妮, 等. 强磁场下贝氏体相变的热力学机制研究[J]. 武汉科技大学学报, 2023, 46(2): 81-86. [16] 冯勇, 侯廷平, 张东, 等. 强磁场下钢中珠光体相变的研究现状及展望[J]. 铸造技术, 2022, 43(9): 755-760. [17] 廖已莹, 侯廷平, 杨雨豪, 等. 磁场下碳化物析出的热力学机制[J]. 原子与分子物理学报, 2025, 42(4): 121-130. [18] XU H, SI S Y, LI Y P, et al. The effect of Laves phase on heavy-ion radiation response of Nb-containing FeCrAl alloy for accident-tolerant fuel cladding[J]. Fundamental Research, 2022, 2(3): 437-446.
[19] 郭笑林, 段海明. 3d过渡金属掺杂对Cd12O12纳米线电子和磁性能的影响[J]. 原子与分子物理学报, 2021, 38(2): 67-73. [20] 宛德福, 马兴隆. 磁性物理学[M]. 修订本. 北京: 电子工业出版社, 1999. [21] PERELOMA E, EDMONDS D V. Phase transfor-mations in steels[M].Cambridge: Woodhead Publishing Limited, 2012.
[22] ZHANG Y D, HE C S, ZHAO X, et al. New microstructural features occurring during transformation from austenite to ferrite under the kinetic influence of magnetic field in a medium carbon steel[J]. Journal of Magnetism and Magnetic Materials, 2004, 284: 287-293.
[23] TITENKO A, DEMCHENKO L. Effect of annealing in magnetic field on ferromagnetic nanoparticle formation in Cu-Al-Mn alloy with induced martensite transformation[J]. Nanoscale Research Letters, 2016, 11(1): 237.
[24] KIRVOGLAZ M,SADOVSKY V D.Effect of strong magnetic fields on phase transformations[J].Fizika Metallov I Metallovedenie, 1964, 18(4):502-506.
[25] KUDRYAVTSEV Y V, UVAROV N V, PEREKOS A E, et al. Effect of the temperature and magnetic field induced martensitic transformation in bulk Fe45Mn26-Ga29 alloy on its electronic structure and physical properties[J]. Intermetallics, 2019, 109: 85-90.
[26] MARTIN D S, VAN DIJK N H, JIMÉNEZ-MELERO E, et al. Real-time martensitic transformation kinetics in maraging steel under high magnetic fields[J]. Materials Science and Engineering: A, 2010, 527(20): 5241-5245.
[27] OMORI T, WATANABE K, UMETSU R Y, et al. Martensitic transformation and magnetic field-induced strain in Fe-Mn-Ga shape memory alloy[J]. Applied Physics Letters, 2009, 95(8): 082508.
[28] KAKESHITA T, SABURI T, KINDO K, et al. Effect of magnetic field and hydrostatic pressure on martensitic transformation and its kinetics[J]. Japanese Journal of Applied Physics, 1997, 36(12R): 7083.
[29] MARTIN D S, VAN D N H, BRVCK E, et al. The isothermal martensite formation in a maraging steel: a magnetic study[J]. Materials Science and Engineering: A, 2008, 481: 757-761.
[30] WANG F, QIAN D S, HUA L, et al. Effect of high magnetic field on the microstructure evolution and mechanical properties of M50 bearing steel during tempering[J]. Materials Science and Engineering: A, 2020, 771: 138623.
[31] KAKESHITA T, KUROIWA K, SHIMIZU K, et al. Effect of magnetic fields on athermal and isothermal martensitic transformations in Fe-Ni-Mn alloys[J]. Materials Transactions, JIM, 1993, 34(5): 415-422.
[32] Bhadeshia H K D H. Nanostructured bainite[J]. Proceedings of the Royal Society A: Mathematical, Phy-sical and Engineering Sciences, 2010, 466(2113): 3-18.
[33] GARCIA-MATEO C, CABALLERO F G, BHADE-SHIA H K D H. Acceleration of low-temperature bainite[J]. ISIJ International, 2003, 43(11): 1821-1825.
[34] GARCÍA-MATEO C, CABALLERO F G. The role of retained austenite on tensile properties of steels with bainitic microstructures[J]. Materials Transactions, 2005, 46(8): 1839-1846.
[35] DONG B Q, HOU T P, WU K M, et al. Low-tempe-rature nanostructured bainite transformation: the effect of magnetic field[J]. Materials Letters, 2019, 240: 66-68.
[36] OHTSUKA H. Effects of a high magnetic field on bainitic transformation in Fe-based alloys[J]. Materials Science and Engineering: A, 2006, 438: 136-139.
[37] OHTSUKA H. Effects of a high magnetic field on bainitic and martensitic transformations in steels[J]. Materials Transactions, 2007, 48(11): 2851-2854.
[38] NAWAZ B, LONG X Y, YANG Z N, et al. Effect of magnetic field on microstructure and mechanical properties of austempered 70Si3MnCr steel[J]. Materials Science and Engineering: A, 2019, 759: 11-18.
[39] 董宝奇. 低温贝氏体钢的力学性能及其强磁场下的相变[D]. 武汉: 武汉科技大学, 2019. [40] 陈健豪, 周晓玲, 孟兰, 等. 强磁场下Fe-0.47C-2.3Si-3.2Mn钢的高温等温相变动力学[J]. 材料热处理学报, 2014, 35(5): 119-122. [41] MITSUI Y, IKEHARA Y, TAKAHASHI K, et al. Fe-Fe3C binary phase diagram in high magnetic fields[J]. Journal of Alloys and Compounds, 2015, 632: 251-255.
[42] 周晓玲.磁场下中碳硅锰钢的扩散型相变研究[D]. 昆明:昆明理工大学, 2009. [43] 刘雯, 周晓玲, 张希俊, 等. 强磁场对硅锰铸钢等温珠光体粒化的影响[J]. 材料热处理学报, 2012, 33(4): 50-54. [44] 冯路路. 合金元素及强磁场对高碳钢珠光体相变及微观结构的影响[D]. 武汉: 武汉科技大学, 2021. [45] JARAMILLO R A, BABU S S, LUDTKA G M, et al. Effect of 30 T magnetic field on transformations in a novel bainitic steel[J]. Scripta Materialia, 2005, 52(6): 461-466.
[46] ZHANG Y, HE C, ZHAO X, et al. A new approach for rapid annealing of medium carbon steels[J]. Advanced Engineering Materials, 2004, 6(5): 310-313.
[47] 吴存有, 李廷举, 温斌, 等. 强磁场对球墨铸铁退火处理的影响[J]. 大连理工大学学报, 2004, 44(4): 514-517. [48] FENG Y, ZHANG D, HOU T P, et al. An integrated exploration from microstructure to mechanics in austenite to pearlite transformation of high carbon steel under high magnetic fields[J]. Journal of Materials Research and Technology, 2024, 32: 3302-3309.
[49] 李钊, 吴润. 钢中强化析出相的理论基础及其应用研究进展[J]. 材料导报, 2020, 34(S2): 412-417. [50] CHONG X Y, JIANG Y H, FENG J. Exploring the intrinsic ductile metastable Fe-C compounds: Complex chemical bonds, anisotropic elasticity and variable thermal expansion[J]. Journal of Alloys and Compounds, 2018, 745: 196-211.
[51] FANG C M, VAN HUIS M A, SLUITER M H F, et al. Stability, structure and electronic properties of γ-Fe23C6 from first-principles theory[J]. Acta Materialia, 2010, 58(8): 2968-2977.
[52] LIU X J, FANG Y M, WANG C P, et al. Effect of external magnetic field on thermodynamic properties and phase transitions in Fe-based alloys[J]. Journal of Alloys and Compounds, 2008, 459(1-2): 169-173.
[53] HOU T P, LI Z H, WU K M, et al. Role of external magnetic fields in determining the thermodynamic properties of iron carbides in steel[J]. Acta Materialia, 2019, 167: 71-79.
[54] HOU T P, LI Y, WU K M, et al. Magnetic-field-induced magnetism and thermal stability of carbides Fe6-xMo<em>xC in molybdenum-containing steels[J]. Acta Materialia, 2016, 102: 24-31.
[55] HOU T P, LI Y, ZHANG J J, et al. Effect of magnetic field on the carbide precipitation during tempering of a molybdenum-containing steel[J]. Journal of Magnetism and Magnetic Materials, 2012, 324(5): 857-861.
[56] WU G H, HOU T P, WU K M, et al. Influence of high magnetic field on carbides and the dislocation density during tempering of high chromium-containing steel[J]. Journal of Magnetism and Magnetic Materials, 2019, 479: 43-49.
[57] ZHANG Y D, GEY N, HE C S, et al. High temperature tempering behaviors in a structural steel under high magnetic field[J]. Acta Materialia, 2004, 52(12): 3467-3474.
[58] ZHENG P, HOU T P, ZHANG D, et al. Determina-tion of the site preference on the structure, magnetism and mechanical anisotropy properties of Mo-containing alloy carbide M6C(M=Fe, Mo)[J]. Journal of Phy-sics: Condensed Matter, 2022, 34(28): 285703.
[59] ZHANG Y D, ZHAO X, BOZZOLO N, et al. Low temperature tempering of a medium carbon steel in high magnetic field[J]. ISIJ International, 2005, 45(6): 913-917.
[60] 周珍妮, 侯廷平, 张国宏, 等. 强磁场条件下中碳低合金钢中碳化物的析出[J]. 材料工程, 2009, 37(7): 5-8. [61] ZHOU Z N, WU K M. Molybdenum carbide precipitation in an Fe-C-Mo alloy under a high magnetic field[J]. ScriptaMaterialia, 2009, 61(7): 670-673.
[62] CHOI J K, OHTSUKA H, XU Y, et al. Effects of a strong magnetic field on the phase stability of plain carbon steels[J]. Scripta Materialia, 2000, 43(3): 221-226.
[63] WANG K, YAN C J, YUAN C H, et al. Progress in research on diffusional phase transformations of Fe-C alloys under high magnetic fields[J]. Journal of Iron and Steel Research International, 2022, 29(5): 707-718.
[64] HOU M D, LI K J, LI X G, et al. Effects of pulsed magnetic fields of different intensities on dislocation density, residual stress, and hardness of Cr4Mo4V steel[J]. Crystals, 2020, 10(2): 115.
[65] CHEN Z Y, LI H, LIN W H, et al. Synergistic improvement of strength and ductility by high magnetic field assisted intercritical annealing in lightweight medium Mn steel[J]. Materials Science and Engineering: A, 2024, 911: 146933.
计量
- 文章访问数: 14
- HTML全文浏览量: 0
- PDF下载量: 3