Effect of Heat Treatment Assisted with Magnetic Field on Microstructure and Magnetic Properties of Co-Ni-Al Alloy
-
摘要: 磁控形状记忆合金的组织性能调控是智能材料领域的重要研究课题之一。本研究以Co38Ni33Al29磁控形状记忆合金为研究对象,探究了在不同磁场强度下热处理对合金微观组织演化及磁性能的影响规律与机制。结果表明,铸态合金呈现出初生枝晶为β奥氏体相,枝晶间为β+γ共晶组织的亚共晶形貌特征,γ相富含Co和Ni元素,呈现强磁性,β相富含Al元素,呈现弱磁性。经3 T磁场热处理后,γ相体积分数增加,尺寸细化,沿磁场方向产生取向织构特征,且其易磁化方向趋于平行磁场。同时,合金整体的饱和磁化强度提高,磁各向异性常数增加,磁致应变量增加。当磁场强度进一步增加至6 T和9 T时,γ相体积分数略微降低,合金整体磁性能仍保持稳定。本研究可为进一步优化Co-Ni-Al系形状记忆合金组织性能提供新的思路及方法。
-
关键词:
- Co-Ni-Al合金 /
- 强磁场热处理 /
- 织构 /
- 磁各向异性
Abstract: The control of microstructures and properties of magnetic shape memory alloys is one of the important research topics in the field of smart materials. In this study, the Co38Ni33Al29 ternary magnetic shape memory alloys are annealed at 1 100 ℃under different intensities of strong magnetic fields, and the influences of microstructural evolution and magnetic properties of the annealed Co38Ni33Al29 alloys are investigated. Results show that the as-cast alloy presents a hypoeutectic characteristic of β austenite phase as primary dendrites and β+γ lamellar eutectics within the interdendritic regions. The γ secondary phase is rich in Co and Ni solutes, presenting ferromagnetism, while the β phase is in paramagnetic state, rich in Al element. As the magnetic field intensity increases to 3 T, the fraction of the γ phase increases, the γ phase becomes refined, presenting orientation tex- tures along the direction of external magnetic field, and the direction of magnetization tends to be parallel to the magnetic field. The saturation magnetization, magnetic anisotropy coefficient and magneto-strain of alloys also increases. If the magnetic field is further increased to 6 T and 9 T, respectively, the amount of γ phase reduces slightly and the magnetic properties are not altered obviously. This work can provide guidance for further optimization of the microstructure and properties of alloys. -
-
[1] 王晓宏, 张博明, 杜善义, 等. 不同初始组织结构的形状记忆合金性能及参数的研究[J]. 材料开发与应用, 2009, 24(1): 12-15. [2] YILDIRIM M, CANDAN Z. Smart materials: The next generation in science and engineering[J]. Materials Today: Proceedings, 2023.
[3] MOHD JANI J, LEARY M, SUBIC A, et al. A review of shape memory alloy research, applications and opportunities[J]. Materials & Design, 2014, 56: 1078-1113.
[4] 罗丰华, 陈嘉砚, 刘浪飞, 等. Co41Ni33Al26合金冷轧带材相变与阻尼能力[J].材料开发与应用, 2006, 21(2):9-13+23. [5] MAZIARZ W. Structure changes of Co-Ni-Al ferromagnetic shape memory alloys after vacuum annealing and hot rolling[J]. Journal of Alloys and Compounds, 2008, 448(1-2): 223-226.
[6] FUJITA A, MORITO H, KUDO T, et al. Magnetocrystalline anisotropy in a single-variant co-Ni-Al ferromagnetic shape memory alloy[J]. Materials Transactions, 2003, 44(10): 2180-2183.
[7] OIKAWA K, WULFF L, IIJIMA T, et al. Promising ferromagnetic Ni-Co-Al shape memory alloy system[J]. Applied Physics Letters, 2001, 79(20): 3290-3292.
[8] OIKAWA K, OTA T, GEJIMA F, et al. Phase equilibria and phase transformations in new B2-type ferromagnetic shape memory alloys of Co-Ni-Ga and Co-Ni-Al systems[J]. Materials Transactions, 2001, 42(11): 2472-2475.
[9] HOSSAIN M S, GOKUL P, PAL B, et al. Correlation of dynamic elastic properties of a heat-treated CoNiAl alloy system with its microstructural changes[J]. Shape Memory and Superelasticity, 2019, 5(4): 468-475.
[10] DAR R D, YAN H X, CHEN Y. Grain boundary engineering of Co-Ni-Al, Cu-Zn-Al, and Cu-Al-Ni shape memory alloys by intergranular precipitation of a ductile solid solution phase[J]. Scripta Materialia, 2016, 115: 113-117.
[11] LIU J, ZHENG H X, HUANG Y L, et al. Microstructure and magnetic field induced strain of directionally solidified ferromagnetic shape memory CoNiAl alloys[J]. Scripta Materialia, 2005, 53(1): 29-33.
[12] JU J, YAN C, YANG L. Microstructure and machine properties of Co37+xNi34-xAl29(x=0, 1, 2, 3) ferromagnetic shape memory alloys[C]. Dalias: DEStech Transactions on Materials Science and Engineering, 2017.
[13] 王涵,史博文,牛建民, 等. 柱状晶Cu-Al-Mn形状记忆合金超弹性各向异性参数研究及数值计算[J].材料开发与应用, 2022, 37(2): 1-9. [14] CAI H, LIN W H, FENG M L, et al. Review on eutectic-type alloys solidified under static magnetic field[J]. Crystals, 2023, 13(6): 891.
[15] 刘雯, 党世红, 张小粉, 等. 强磁场对硅锰铸钢于A1点附近等温珠光体相变的影响[J]. 材料开发与应用, 2017, 32(1): 48-53. [16] HUANG C L, SHUAI S S, WANG P C, et al. The effect of static magnetic field on solid-liquid interfacial free energy of Al-Cu alloy system[J]. Scripta Materialia, 2020, 187: 232-236.
[17] FAN L J, ZHONG Y B, XU Y L, et al. Promoted diffusion mechanism of Fe2.7wt.%Si-Fe10wt.%Si couples under magnetic field by atomic-scale observations[J]. Scientific Reports, 2019, 9: 19920.
[18] 帅三三, 温烁凯, 郭锐, 等. 磁场下金属凝固过程形核行为的研究现状[J]. 铸造技术, 2022, 43(9): 699-712. [19] JIE J C, YUE S P, LIU J, et al. Revealing the mechanisms for the nucleation and formation of equiaxed grains in commercial purity aluminum by fluid-solid coupling induced by a pulsed magnetic field[J]. Acta Materialia, 2021, 208: 116747.
[20] GHAI V, PASHAZADEH S, RUAN H Z, et al. Orientation of graphene nanosheets in magnetic fields[J]. Progress in Materials Science, 2024, 143: 101251.
[21] WANG J, HE Y X, LI J S, et al. Experimental platform for solidification and in situ magnetization measurement of undercooled melt under strong magnetic field[J]. 2015, 86(2): 025102.
[22] LU J B, SHI H, SEDLAKOVA-IGNACOVA S, et al. Microstructure and precipitates in annealed Co38Ni33-Al29 ferromagnetic shape memory alloy[J]. Journal of Alloys and Compounds, 2013, 572: 5-10.
[23] KAINUMA R, ISE M, JIA C C, et al. Phase equilibria and microstructural control in the Ni-Co-Al system[J]. Intermetallics, 1996, 4: S151-S158.
[24] LIU J, LI J G. Microstructure, shape memory effect and mechanical properties of rapidly solidified Co-Ni-Al magnetic shape memory alloys[J]. Materials Science and Engineering: A, 2007, 454: 423-432.
[25] SCHNEIDER C M, BRESSLER P, SCHUSTER P, et al. Curie temperature of ultrathin films of fcc-cobalt epitaxially grown on atomically flat Cu(100) surfaces[J]. Physical Review Letters, 1990, 64(9): 1059-1062.
[26] OMORI T, SUTOU Y, OIKAWA K, et al. Shape memory and magnetic properties of Co-Al ferromagnetic shape memory alloys[J]. Materials Science and Engineering: A, 2006, 438: 1045-1049.
[27] ZENG Y P, MITTNACHT T, WERNER W, et al. Gibbs energy and phase-field modeling of ferromagnetic ferrite (α)→ paramagnetic austenite (γ) transformation in Fe-C alloys under an external magnetic field[J]. Acta Materialia, 2022, 225: 117595.
[28] LI Z F, DONG J, ZENG X Q, et al. Influence of strong static magnetic field on intermediate phase growth in Mg-Al diffusion couple[J]. Journal of Alloys and Compounds, 2007, 440(1-2): 132-136.
[29] REN X, CHEN G Q, ZHOU W L, et al. Effect of high magnetic field on intermetallic phase growth in Ni-Al diffusion couples[J]. Journal of Alloys and Compounds, 2009, 472(1-2): 525-529.
[30] YUAN Z J, REN Z M, LI C J, et al. Effect of high magnetic field on diffusion behavior of aluminum in Ni-Al alloy[J]. Materials Letters, 2013, 108: 340-342.
[31] YOUDELIS W V, CAHOON J R. Diffusion in a magnetic field[J]. Canadian Journal of Physics, 1970, 48(6): 805-808.
[32] SHIRSATH S E, LIU X X, YASUKAWA Y, et al. Switching of magnetic easy-axis using crystal orientation for large perpendicular coercivity in CoFe2O4 thin film[J]. Scientific Reports, 2016, 6: 30074.
[33] YAN Y J, WANG J, WEI C, et al. Determination of phase transformation kinetics under magnetic fields: modeling based on magnetization and application in a Fe-1 wt.%Cu alloy[J]. 2024, 124(22): 222402.
[34] 姜寿亭, 李卫. 凝聚态磁性物理[M]. 北京: 科学出版社, 2003. [35] GEORGIANA B, OVIDIU F C. 1-Fundamentals of magnetism [M]//JITENDRA P S, KEUN H C, RAMESH C S, et al. Ferrite Nanostructured Magnetic Materials. UK: Woodhead Publishing, 2023, 3-15.
计量
- 文章访问数: 42
- HTML全文浏览量: 5
- PDF下载量: 22