留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

船舶铝合金增材制造技术的研究现状及展望

王浩 刘坤 吴红 周军波 李杰 张清林

王浩, 刘坤, 吴红, 周军波, 李杰, 张清林. 船舶铝合金增材制造技术的研究现状及展望[J]. 材料开发与应用, 2024, 39(2): 17-27,43.
引用本文: 王浩, 刘坤, 吴红, 周军波, 李杰, 张清林. 船舶铝合金增材制造技术的研究现状及展望[J]. 材料开发与应用, 2024, 39(2): 17-27,43.
WANG Hao, LIU Kun, WU Hong, ZHOU Junbo, LI Jie, ZHANG Qinglin. Research Status and Prospect of Additive Manufacturing Technology of Ship Aluminum Alloys[J]. Development and Application of Materials, 2024, 39(2): 17-27,43.
Citation: WANG Hao, LIU Kun, WU Hong, ZHOU Junbo, LI Jie, ZHANG Qinglin. Research Status and Prospect of Additive Manufacturing Technology of Ship Aluminum Alloys[J]. Development and Application of Materials, 2024, 39(2): 17-27,43.

船舶铝合金增材制造技术的研究现状及展望

基金项目: 

国家自然科学基金资助项目(52105351)

中国博士后基金面上项目(2022M722928)

详细信息
    作者简介:

    王浩,男,1998年生,硕士研究生,研究方向为金属增材制造。

    通讯作者:

    刘坤,男,1989年生,副教授,主要从事焊接及增材制造技术研究。E-mail:liu_kun@163.com

  • 中图分类号: TG146.2+1

Research Status and Prospect of Additive Manufacturing Technology of Ship Aluminum Alloys

  • 摘要: 增材制造技术在船舶装备制造领域极具发展前景,轻量化、低损耗的制造模式大大地提高了能源及材料利用率。受限于铝合金自身冶金特性和增材制造工艺,铝合金构件在增材制造过程中易产生气孔、开裂等冶金缺陷,影响船舶装备的质量安全和可靠性。本研究主要概述了船舶铝合金电弧熔丝增材、选区激光熔化和摩擦搅拌沉积三种增材制造工艺及冶金缺陷控制方面的研究现状及进展,并对船舶铝合金增材制造技术的未来发展方向进行了展望,为船舶铝合金增材制造技术的发展及铝合金构件的缺陷控制提供参考。

     

  • [1] 周瀚森, 施佳慧, 徐博文, 等. 船舶增材制造的认可与船级社标准分析[J]. 材料开发与应用, 2023, 38(3):63-68.
    [2] LIU K, CHEN X Z, ZHANG Y P, et al. Location dependence of microstructure and mechanical properties of Cu-Al alloy fabricated by dual wire CMT[J]. Materials Research Express, 2019, 6(12):126567.
    [3] HOSSEINABADI O F, KHEDMATI M R. A review on ultimate strength of aluminium structural elements and systems for marine applications[J]. Ocean Engineering, 2021, 232:109153.
    [4] 秦艳利, 孙博慧, 张昊, 等. 选区激光熔化铝合金及其复合材料在航空航天领域的研究进展[J]. 中国激光, 2021, 48(14):1402002.
    [5] 常天行, 刘彬, 方学伟, 等. 铝合金增材制造的发展现状与展望[J]. 宇航材料工艺, 2022, 52(2):76-84.
    [6] 苗玉刚, 李春旺, 尹晨豪, 等. 船用铝/钢焊接接头BC-MIG电弧增材制造工艺[J]. 焊接学报, 2019, 40(12):129-132.
    [7] 陈超, 刘李明, 徐江敏. 金属增材制造技术在船舶与海工领域中的应用分析[J]. 中国造船, 2016, 57(3):215-225.
    [8] 李雯哲, 钱峰, 程兴旺. 增材制造中高强铝合金的缺陷与力学性能研究进展[J]. 材料工程, 2023, 51(3):29-38.
    [9] 郜庆伟, 赵健, 舒凤远, 等. 铝合金增材制造技术研究进展[J]. 材料工程, 2019, 47(11):32-42.
    [10] 赵东升, 孔乐乐, 缪唐军, 等. 船用铝合金电弧增材制造实验[J]. 实验室科学, 2020, 23(2):23-26.
    [11] 周长平, 林枫, 杨浩, 等. 增材制造技术在船舶制造领域的应用进展[J]. 船舶工程, 2017(2):80-87.
    [12] 张楚琦, 于宏飞, 叶志鹏, 等. 增材制造技术在船舶领域的应用及技术现状研究[J]. 电子产品可靠性与环境试验, 2023, 41(1):90-94.
    [13] KUMAR SINHA A, PRAMANIK S, YAGATI K P. Research progress in arc based additive manufacturing of aluminium alloys-A review[J]. Measurement, 2022, 200:111672.
    [14] GALY C, LE GUEN E, LACOSTE E, et al. Main defects observed in aluminum alloy parts produced by SLM:from causes to consequences[J]. Additive Manufacturing, 2018, 22:165-175.
    [15] PHILLIPS B J, WILLIAMSON C J, KINSER R P, et al. Microstructural and mechanical characterization of additive friction stir-deposition of aluminum alloy 5083 effect of lubrication on material anisotropy[J]. Materials, 2021, 14(21):6732.
    [16] HORGAR A, FOSTERVOLL H, NYHUS B, et al. Additive manufacturing using WAAM with AA5183 wire[J]. Journal of Materials Processing Technology, 2018, 259:68-74.
    [17] WU B T, PAN Z X, DING D H, et al. A review of the wire arc additive manufacturing of metals:properties, defects and quality improvement[J]. Journal of Manufacturing Processes, 2018, 35:127-139.
    [18] ABOULKHAIR N T, EVERITT N M, ASHCROFT I, et al. Reducing porosity in AlSi10Mg parts processed by selective laser melting[J]. Additive Manufacturing, 2014, 1-4:77-86.
    [19] PHILLIPS B J, MASON C J T, BECK S C, et al. Effect of parallel deposition path and interface material flow on resulting microstructure and tensile behavior of Al-Mg-Si alloy fabricated by additive friction stir deposition[J]. Journal of Materials Processing Technology, 2021, 295:117169.
    [20] LANGELANDSVIK G, AKSELSEN O M, FURU T, et al. Review of aluminum alloy development for wire arc additive manufacturing[J]. Materials, 2021, 14(18):5370.
    [21] HUANG C, WANG G L, SONG H, et al. Rapid surface defects detection in wire and arc additive manufacturing based on laser profilometer[J]. Measurement, 2022, 189:110503.
    [22] KUMAR V, RANJAN SAHU D, MANDAL A. Parametric study and optimization of GMAW based AM process for Multi-layer bead deposition[J]. Materials Today:Proceedings, 2022, 62:255-261.
    [23] WANG J, PAN Z X, CUIURI D, et al. Phase constituent control and correlated properties of titanium aluminide intermetallic alloys through dual-wire arc additive manufacturing[J]. Materials Letters, 2019, 242:111-114.
    [24] GOKHALE N P, KALA P, SHARMA V. Thinwa-lled metal deposition with GTAW welding-based additive manufacturing process[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineeri-ng, 2019, 41(12):1-12.
    [25] LIN J J, LV Y H, GUO D J, et al. Enhanced strength and ductility in thin Ti-6Al-4V alloy components by alternating the thermal cycle strategy during plasma arc additive manufacturing[J]. Materials Science and Engineering:A, 2019, 759:288-297.
    [26] WANG K B, LIU Y X, SUN Z, et al. Microstructural evolution and mechanical properties of Inconel 718 superalloy thin wall fabricated by pulsed plasma arc additive manufacturing[J]. Journal of Alloys and Compounds, 2020, 819:152936.
    [27] WANG Y H, CHEN X Z, KONOVALOV S, et al. Insitu wire-feed additive manufacturing of Cu-Al alloy by addition of silicon[J]. Applied Surface Science, 2019, 487:1366-1375.
    [28] LIU K, CHEN X Z, SHEN Q K, et al. Micro-structural evolution and mechanical properties of deep cryogenic treated Cu-Al-Si alloy fabricated by Cold Metal Transfer (CMT) process[J]. Materials Characterization, 2020, 159:110011.
    [29] XU X F, GANGULY S, DING J L, et al. Enhancing mechanical properties of wire+arc additively manufactured INCONEL 718 superalloy through in-process thermomechanical processing[J]. Materials & Design, 2018, 160:1042-1051.
    [30] CONG B Q, DING J L, WILLIAMS S. Effect of arc mode in cold metal transfer process on porosity of additively manufactured Al-6.3%Cu alloy[J]. The International Journal of Advanced Manufacturing Technology, 2015, 76(9):1593-1606.
    [31] BARTSCH H, KVHNE R, CITARELLI S, et al. Fatigue analysis of wire arc additive manufactured (3D printed) components with unmilled surface[J]. Structures, 2021, 31:576-589.
    [32] 石寅晖, 李洁, 刘坤, 等. 铝合金电弧熔丝增材制造的冶金缺陷研究现状与展望[J]. 材料热处理学报, 2023, 44(6):1-10.
    [33] WAGNER D C, YANG Y K, KOU S. Spatter and porosity in gas-metal arc welding of magnesium alloys:mechanisms and elimination[J]. Welding Journal, 2013, 92(12):347-s.
    [34] ANYALEBECHI P N. Hydrogen-induced gas porosity formation in Al-4.5 wt% Cu-1.4 wt% Mg alloy[J]. Journal of Materials Science, 2013, 48(15):5342-5353.
    [35] 聂文忠, 曾嘉艺, 李晓萱, 等. 电弧熔丝增材制造铝合金零件中气孔的研究现状[J]. 机械工程材料, 2021, 45(11):97-102.
    [36] DONG B L, CAI X Y, LIN S B, et al. Microstruct-ures and mechanical properties of wire arc additive manufactured 5183-Al:Influences of deposition dimensions[J]. CIRP Journal of Manufacturing Science and Technology, 2021, 35:744-752.
    [37] ALDALUR E, SUÁREZ A, VEIGA F. Metal transfer modes for Wire Arc Additive Manufacturing Al-Mg alloys:influence of heat input in microstructure and porosity[J]. Journal of Materials Processing Technology, 2021, 297:117271.
    [38] ZHANG C, GAO M, ZENG X Y. Workpiece vibration augmented wire arc additive manufacturing of high strength aluminum alloy[J]. Journal of Materials Processing Technology, 2019, 271:85-92.
    [39] XU M, ZHANG H D, YUAN T, et al. Micro-structural characteristics and cracking mechanism of Al-Cu alloys in wire arc addictive manufacturing[J]. Materials Characterization, 2023, 197:112677.
    [40] CROSS C E. On the origin of weld solidification cr-acking[M]//Hot Cracking Phenomena in Welds. Berlin/Heidelberg:Springer-Verlag, 2005:3-18.
    [41] KOU S. Welding metallurgy[M]. 2nd ed. Hoboken, NJ:Wiley-Interscience, 2003
    [42] GU J L, BAI J, DING J L, et al. Design and cracking susceptibility of additively manufactured Al-Cu-Mg alloys with tandem wires and pulsed arc[J]. Journal of Materials Processing Technology, 2018, 262:210-220.
    [43] OUYANG J H, WANG H, KOVACEVIC R. Rapid prototyping of 5356-aluminum alloy based on variable polarity gas tungsten arc welding:process control and microstructure[J]. Materials and Manufacturing Processes, 2002, 17(1):103-124.
    [44] MASUBUCHI K. Analysis of welded structures:residual stresses, distortion, and their consequences[M]. Oxford:Pergamon Press, 1980.
    [45] DEBROY T, WEI H L, ZUBACK J S, et al. Additive manufacturing of metallic components-Process, structure and properties[J]. Progress in Materials Science, 2018, 92:112-224.
    [46] DENLINGER E R, IRWIN J, MICHALERIS P. Thermomechanical modeling of additive manufacturing large parts[J]. Journal of Manufacturing Science and Engineering, 2014, 136(6):061007.
    [47] MEHNEN J, DING J L, LOCKETT H, et al. Design study for wire and arc additive manufacture[J]. International Journal of Product Development, 2014, 19(1/2/3):2.
    [48] KAUFMANN N, IMRAN M, WISCHEROPP T M, et al. Influence of process parameters on the quality of aluminium alloy EN AW 7075 using selective laser melting (SLM)[J]. Physics Procedia, 2016, 83:918-926.
    [49] ABOULKHAIR N T, MASKERY I, TUCK C, et al. On the formation of AlSi10Mg single tracks and layers in selective laser melting:Microstructure and nano-mechanical properties[J]. Journal of Materials Processing Technology, 2016, 230:88-98.
    [50] WEINGARTEN C, BUCHBINDER D, PIRCH N, et al. Formation and reduction of hydrogen porosity during selective laser melting of AlSi10Mg[J]. Journal of Materials Processing Technology, 2015, 221:112-120.
    [51] YANG K, ROMETSCH P, JARVIS T, et al. Porosity formation mechanisms and fatigue response in Al-Si-Mg alloys made by selective laser melting[J]. Materials Science and Engineering:A, 2018, 712:166-174.
    [52] PARRY L, ASHCROFT I A, WILDMAN R D. Understanding the effect of laser scan strategy on residual stress in selective laser melting through thermo-mechanical simulation[J]. Additive Manufacturing, 2016, 12:1-15.
    [53] KOUTNY D, PALOUSEK D, PANTELEJEV L, et al. Influence of scanning strategies on processing of aluminum alloy EN AW 2618 using selective laser melting[J]. Materials, 2018, 11(2):298.
    [54] CATCHPOLE-SMITH S, ABOULKHAIR N, PARRY L, et al. Fractal scan strategies for selective laser melting of ‘unweldable' nickel superalloys[J]. Additive Manufacturing, 2017, 15:113-122.
    [55] MARTIN J H, YAHATA B D, HUNDLEY J M, et al. 3D printing of high-strength aluminium alloys[J]. Nature, 2017, 549(7672):365-369.
    [56] PALANIVEL S, MISHRA R S. Building without melting:a short review of friction-based additive manufacturing techniques[J]. International Journal of Additive and Subtractive Materials Manufacturing, 2017, 1(1):82.
    [57] GARCIA D, HARTLEY W D, RAUCH H A, et al. In situ investigation into temperature evolution and heat generation during additive friction stir deposition:a comparative study of Cu and Al-Mg-Si[J]. Additive Manufacturing, 2020, 34:101386.
    [58] SANDEEP R, MANU S, MOHAN P P, et al. Metal additive manufacturing using friction stir engineering:a review on microstructural evolution, tooling and design strategies[J]. CIRP Journal of Manufacturing Science and Technology, 2021, 35:560-588.
    [59] PHILLIPS B J, AVERY D Z, LIU T, et al. Microstructure-deformation relationship of additive friction stir-deposition Al-Mg-Si[J]. Materialia, 2019, 7:100387.
    [60] MOSTAFAPOR A, MOHAMMADINIA V. Mechanical properties and microstructure evolution of AA1100 aluminum sheet processed by accumulative press bonding process[J]. Acta Metallurgica Sinica (English Letters), 2016, 29(8):735-741.
    [61] GRIFFITHS R J, GARCIA D, SONG J, et al. Solid-state additive manufacturing of aluminum and copper using additive friction stir deposition:process-microstructure linkages[J]. Materialia, 2021, 15:100967.
    [62] AGRAWAL P, HARIDAS R S, YADAV S, et al. Processing-structure-property correlation in additive friction stir deposited Ti-6Al-4V alloy from recycled metal chips[J]. Additive Manufacturing, 2021, 47:102259.
    [63] HARTLEY W D, GARCIA D, YODER J K, et al. Solid-state cladding on thin automotive sheet metals enabled by additive friction stir deposition[J]. Journal of Materials Processing Technology, 2021, 291:117045.
    [64] ZHU N, AVERY D Z, RUTHERFORD B A, et al. The effect of anodization on the mechanical properties of AA6061 produced by additive friction stir-deposition[J]. Metals, 2021, 11(11):1773.
    [65] PERRY M E J, GRIFFITHS R J, GARCIA D, et al. Morphological and microstructural investigation of the non-planar interface formed in solid-state metal additive manufacturing by additive friction stir deposition[J]. Additive Manufacturing, 2020, 35:101293.
  • 加载中
计量
  • 文章访问数:  140
  • HTML全文浏览量:  48
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-26
  • 网络出版日期:  2024-05-09

目录

    /

    返回文章
    返回