留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

快速凝固AZ31镁合金的微观组织与力学性能

孙宇初 陈云贵

孙宇初, 陈云贵. 快速凝固AZ31镁合金的微观组织与力学性能[J]. 材料开发与应用, 2024, 39(2): 44-49.
引用本文: 孙宇初, 陈云贵. 快速凝固AZ31镁合金的微观组织与力学性能[J]. 材料开发与应用, 2024, 39(2): 44-49.
SUN Yuchu, CHEN Yungui. Microstructure and Mechanical Characteristics of Rapidly Solidified AZ31 Magnesium Alloy[J]. Development and Application of Materials, 2024, 39(2): 44-49.
Citation: SUN Yuchu, CHEN Yungui. Microstructure and Mechanical Characteristics of Rapidly Solidified AZ31 Magnesium Alloy[J]. Development and Application of Materials, 2024, 39(2): 44-49.

快速凝固AZ31镁合金的微观组织与力学性能

详细信息
    作者简介:

    孙宇初,男,1998年生,硕士研究生,研究方向为快速凝固镁合金。E-mail:yuchusun@163.com

  • 中图分类号: TG113

Microstructure and Mechanical Characteristics of Rapidly Solidified AZ31 Magnesium Alloy

  • 摘要: 基于单辊快速凝固工艺,分析了不同辊速条件下AZ31镁合金的带材组织及其250 ℃热挤压棒材的力学性能。结果表明,带材截面微观组织存在的急冷定向凝固区和缓冷等轴晶区,是受温度梯度影响产生的微观组织分区现象;熔体冷却时裹气产生隔热区,导致带材微观组织均一度降低;在17.58 m/s最优辊速条件下,AZ31镁合金的250 ℃热挤压棒材的屈服强度和伸长率分别达到360 MPa和14.47 %。

     

  • [1] SAHM P R, JONES H, ADAM C M. Science and Technology of the Undercooled Melt:Rapid Solidification Materials and Technologies[M]. Dordrecht:Springer Netherlands, 1986.
    [2] 王渠东. 镁合金及其成形技术[M]. 北京:机械工业出版社, 2017.
    [3] ZIĘ BA A, STAN-GȽ OWIŃ SKA K, CZAJA P, et al. Microstructure and catalytic activity of Al13Fe4 and Al13Co4 melt-spun alloys[J]. Microscopy and Microanalysis, 2022, 28(3):961-967.
    [4] JARDIM P M, SOLÓRZANO G, VANDER SANDE J B. Second phase formation in melt-spun Mg-Ca-Zn alloys[J]. Materials Science and Engineering:A, 2004, 381(1-2):196-205.
    [5] PAULIN I, DONIK č, CVAHTE P, et al. Bimodal microstructure obtained by rapid solidification to improve the mechanical and corrosion properties of aluminum alloys at elevated temperature[J]. Metals, 2021, 11(2):230.
    [6] GORSSE S, VIVōS S, BELLANGER P, et al. Multi-scale architectured thermoelectric materials in the Mg2(Si, Sn) system[J]. Materials Letters, 2016, 166:140-144.
    [7] TKATCH V I, GRISHIN A M, MAKSIMOV V V. Estimation of the heat transfer coefficient in melt spinning process[J]. Journal of Physics:Conference Series, 2009, 144:012104.
    [8] GOVIND, SUSEELAN NAIR K, MITTAL M C, et al. Development of rapidly solidified (RS) magnesium-aluminium-zinc alloy[J]. Materials Science and Engineering:A, 2001, 304-306:520-523.
    [9] IZUMI S, YAMASAKI M, KAWAMURA Y. Relation between corrosion behavior and microstructure of Mg-Zn-Y alloys prepared by rapid solidification at various cooling rates[J]. Corrosion, 2009, 51(2):395-402.
    [10] EKRAMI A, SHAHRI F, MIRAK A. Effect of rare-earth elements and quenching wheel speed on the structure, mechanical and thermal properties of rapidly solidified AZ91 Mg melt-spun ribbons[J]. Materials Science and Engineering:A, 2017, 684:586-591.
    [11] KURZ W, GILGIEN P. Selection of microstructures in rapid solidification processing[J]. Materials Science and Engineering:A, 1994, 178(1-2):171-178.
    [12] Flemings M C, Mortensen A. Rapid solidification pro-cessing of magnesium alloys[M]. Watertown:Department of Materials Science & Engineering Massachu-setts Institute of Technology, 1984.
    [13] NUSSBAUM G, SAINFORT P, REGAZZONI G, et al. Strengthening mechanisms in the rapidly solidified AZ 91 magnesium alloy[J]. Scripta Metallurgica, 1989, 23(7):1079-1084.
  • 加载中
计量
  • 文章访问数:  105
  • HTML全文浏览量:  61
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-14
  • 网络出版日期:  2024-05-09

目录

    /

    返回文章
    返回