留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光增材制造近β钛合金显微组织与力学性能研究

李海涛 齐敏 陈冬梅 黄森森 王倩 马英杰 雷家峰

李海涛, 齐敏, 陈冬梅, 黄森森, 王倩, 马英杰, 雷家峰. 激光增材制造近β钛合金显微组织与力学性能研究[J]. 材料开发与应用, 2024, 39(1): 30-37.
引用本文: 李海涛, 齐敏, 陈冬梅, 黄森森, 王倩, 马英杰, 雷家峰. 激光增材制造近β钛合金显微组织与力学性能研究[J]. 材料开发与应用, 2024, 39(1): 30-37.
LI Haitao, QI Min, CHEN Dongmei, HUANG Sensen, WANG Qian, MA Yingjie, LEI Jiafeng. Study on Microstructure and Mechanical Properties of Laser Metal Deposition Near β Titanium Alloy[J]. Development and Application of Materials, 2024, 39(1): 30-37.
Citation: LI Haitao, QI Min, CHEN Dongmei, HUANG Sensen, WANG Qian, MA Yingjie, LEI Jiafeng. Study on Microstructure and Mechanical Properties of Laser Metal Deposition Near β Titanium Alloy[J]. Development and Application of Materials, 2024, 39(1): 30-37.

激光增材制造近β钛合金显微组织与力学性能研究

基金项目: 

国家重点研发计划(2021YFC2801801)

详细信息
    作者简介:

    李海涛,男,1978年生,主要从事金属结构材料及应用技术研究。E-mail:leastaony@163.com

    通讯作者:

    马英杰,男,1981年生,主要从事结构钛合金研究。E-mail:yjma@imr.ac.cn

  • 中图分类号: TG146.23

Study on Microstructure and Mechanical Properties of Laser Metal Deposition Near β Titanium Alloy

  • 摘要: 研究了激光沉积打印Ti55511钛合金的显微组织和室温拉伸性能,表征了打印态、热处理态Ti55511合金的晶粒形态及晶体学织构,分析了不同退火热处理温度对激光增材制造钛合金强塑性的影响。结果表明,原始打印态Ti55511钛合金由粗大的β晶粒组成,并且β晶粒以柱状晶和等轴晶两种类型的晶粒交替生长,呈现竹节状形态。在打印态Ti55511组织中,β基体析出的α片层提供了大量的界面,有效阻碍了位错运动,使合金具有高强度和低塑性。580 ℃退火热处理后,合金的屈服强度、抗拉强度变化不明显,伸长率有一定的提升。进一步提高退火温度至620 ℃后,合金的屈服强度、抗拉强度降低,但强度值依然大于1 000 MPa,同时伸长率大幅提升。因此,可通过退火热处理调控α晶粒的尺寸和体积分数,以提高合金的强塑性匹配。当应力平行于Z方向时,样品的屈服强度、抗拉强度略低于垂直于Z方向的,而伸长率显著高于应力垂直于Z方向的。

     

  • [1] 王欣, 罗学昆, 宇波, 等. 航空航天用钛合金表面工程技术研究进展[J]. 航空制造技术, 2022, 65(4): 14-24.
    [2] 吝媛, 杨奇, 黄拓, 等. Ti9148钛合金β-相晶粒长大行为[J]. 有色金属科学与工程, 2022, 13(2): 93-97.
    [3] 任德春, 苏虎虎, 张慧博, 等. 冷旋锻变形对TB9钛合金显微组织和拉伸性能的影响[J]. 金属学报, 2019, 55(4): 480-488.
    [4] PILCHAK A L, SARGENT G A, SEMIATIN S L. E-arly stages of microstructure and texture evolution during beta annealing of Ti-6Al-4V[J]. Metallurgical and Materials Transactions A, 2018, 49(3): 908-919.
    [5] IVASISHIN O M, MARKOVSKY P E, MATVIYC-HUK Y V, et al. A comparative study of the mechanical properties of high-strength β-titanium alloys[J]. Journal of Alloys and Compounds, 2008, 457(1-2): 296-309.
    [6] IVASISHIN O M, MARKOVSKY P E, SEMIATIN S L, et al. Aging response of coarse- and fine-grained β titanium alloys[J]. Materials Science and Engineering: A, 2005, 405(1-2): 296-305.
    [7] KARASEVSKAYA O P, IVASISHIN O M, SEMIA-TIN S L, et al. Deformation behavior of beta-titanium alloys[J]. Materials Science and Engineering: A, 2003, 354(1-2): 121-132.
    [8] YANG X P, RICHARD LIU C. Machining titanium and its alloys[J]. Machining Science and Technolo-gy, 1999, 3(1): 107-139.
    [9] SCHWAB H, BÖNISCH M, GIEBELER L, et al. P-rocessing of Ti-5553 with improved mechanical properties via an in situ heat treatment combining selective laser melting and substrate plate heating[J]. Materials & Design, 2017, 130: 83-89.
    [10] WANG K, BAO R, LIU D, et al. Plastic anisotropy of laser melting deposited Ti-5Al-5Mo-5V-1Cr-1Fe titanium alloy[J]. Materials Science and Engineering: A, 2019, 746: 276-289.
    [11] WANG Z, XIE M S, LI Y Y, et al. Premature failure of an additively manufactured material[J]. NPG Asia Materials, 2020, 12: 30.
    [12] BERMINGHAM M J, KENT D, PACE B, et al. High strength heat-treatable β-titanium alloy for additive manufacturing[J]. Materials Science and Enginee-ring: A, 2020, 791: 139646.
    [13] LIU C M, TIAN X J, TANG H B, et al. Microstructural characterization of laser melting deposited Ti-5Al-5Mo-5V-1Cr-1Fe near β titanium alloy[J]. Journal of Alloys and Compounds, 2013, 572: 17-24.
    [14] ZHANG Q, CHEN J, ZHAO Z, et al. Microstructure and anisotropic tensile behavior of laser additive manufactured TC21 titanium alloy[J]. Materials Science and Engineering: A, 2016, 673: 204-212.
    [15] BRANDL E, BAUFELD B, LEYENS C, et al. Additive manufactured Ti-6Al-4V using welding wire: comparison of laser and arc beam deposition and evaluation with respect to aerospace material specifications[J]. Physics Procedia, 2010, 5: 595-606.
    [16] BAUFELD B, BRANDL E, VAN DER BIEST O. W-ire based additive layer manufacturing: comparison of microstructure and mechanical properties of Ti-6Al-4V components fabricated by laser-beam deposition and shaped metal deposition[J]. Journal of Materials Processing Technology, 2011, 211(6): 1146-1158.
    [17] LIU C M, WANG H M, TIAN X J, et al. Subtransus triplex heat treatment of laser melting deposited Ti-5Al-5Mo-5V-1Cr-1Fe near β titanium alloy[J]. Materials Science and Engineering: A, 2014, 590: 30-36.
    [18] 席明哲, 高士友, 刘博, 等. 扫描方式和退火热处理对激光快速成形TA15钛合金组织与性能的影响[J]. 稀有金属材料与工程, 2014, 43(2): 445-449.
    [19] 谷美邦. 热处理制度对激光增材制造TA15钛合金力学性能的影响[J]. 航空制造技术, 2021, 64(3): 97-102.
    [20] NANDWANA P, LEE Y, RANGER C, et al. Post-processing to modify the α phase micro-texture and β phase grain morphology in Ti-6Al-4V fabricated by powder bed electron beam melting[J]. Metallurgical and Materials Transactions A, 2019, 50(7): 3429-3439.
    [21] WANG F D, MEI J, WU X H. Microstructure study of direct laser fabricated Ti alloys using powder and wire[J]. Applied Surface Science, 2006, 253(3): 1424-1430.
    [22] YAN Z B, WANG K, ZHOU Y, et al. Crystallo-graphic orientation dependent crack nucleation during the compression of a widmannstätten-structure α/β titanium alloy[J]. Scripta Materialia, 2018, 156: 110-114.
    [23] SHI R, MA N, WANG Y. Predicting equilibrium sh-ape of precipitates as function of coherency state[J]. Acta Materialia, 2012, 60(10): 4172-4184.
    [24] BANERJEE D, WILLIAMS J C. Perspectives on titanium science and technology[J]. Acta Materialia, 2013, 61(3): 844-879.
    [25] FURUHARA T, TAKAGI S, WATANABE H, et al. Crystallography of grain boundary α precipitates in a β titanium alloy[J]. Metallurgical and Materials Transactions A, 1996, 27(6): 1635-1646.
    [26] LIU Z, QIN Z X, LIU F, et al. The microstructure and mechanical behaviors of the Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloy produced by laser melting deposi-tion[J]. Materials Characterization, 2014, 97: 132-139.
    [27] ZHANG Y W, LI S J, OBBARD E G, et al. Elastic properties of Ti-24Nb-4Zr-8Sn single crystals with bcc crystal structure[J]. Acta Materialia, 2011, 59(8): 3081-3090.
  • 加载中
计量
  • 文章访问数:  71
  • HTML全文浏览量:  4
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-13

目录

    /

    返回文章
    返回