留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一次镁空气电池阳极材料研究进展

冯壮壮 梅迪 朱世杰 王利国

冯壮壮, 梅迪, 朱世杰, 王利国. 一次镁空气电池阳极材料研究进展[J]. 材料开发与应用, 2022, 37(6): 12-21.
引用本文: 冯壮壮, 梅迪, 朱世杰, 王利国. 一次镁空气电池阳极材料研究进展[J]. 材料开发与应用, 2022, 37(6): 12-21.
FENG Zhuangzhuang, MEI Di, ZHU Shijie, WANG Liguo. Research Progress of Anode Materials for Primary Magnesium-air Batteries[J]. Development and Application of Materials, 2022, 37(6): 12-21.
Citation: FENG Zhuangzhuang, MEI Di, ZHU Shijie, WANG Liguo. Research Progress of Anode Materials for Primary Magnesium-air Batteries[J]. Development and Application of Materials, 2022, 37(6): 12-21.

一次镁空气电池阳极材料研究进展

详细信息
    作者简介:

    冯壮壮,1992年生,硕士研究生,研究方向为一次镁空气电池阳极材料。

    通讯作者:

    梅迪,1992年生,博士,讲师,主要从事镁合金腐蚀行为及腐蚀防护等领域的研究。E-mail:dimei@zzu.edu.cn

  • 中图分类号: TG146

Research Progress of Anode Materials for Primary Magnesium-air Batteries

  • 摘要: 金属空气电池是一种安全高效无污染的新型电池,其广泛的应用前景得到了全球研究者的关注。镁空气电池是金属空气电池的代表之一,也是继锂电池之后电池发展的新方向,然而现有的镁空气电池利用率远未达到期望,而且电压不够稳定,所以提升其利用率及稳定性对于充分发挥镁空气电池的潜力至关重要。本研究从一次镁空气电池的结构出发,全面介绍了镁空气电池系统的相关概念,从阳极开发的角度全面介绍了镁空气电池最新的相关研究进展。同时基于近年来发表的结果,讨论了阳极开发所需要关注的因素,总结了一次镁空气电池阳极材料的设计方法,展望了未来镁空气电池的研究方向。

     

  • [1] DENG M, WANG L Q, VAGHEFINAZARI B, et al. High-energy and durable aqueous magnesium batteries:recent advances and perspectives[J]. Energy Storage Materials, 2021, 43:238-247.
    [2] RASHAD M, ASIF M, WANG Y X, et al. Recent advances in electrolytes and cathode materials for magnesium and hybrid-ion batteries[J]. Energy Storage Materials, 2020, 25:342-375.
    [3] ZHANG Y F, GENG H B, WEI W F, et al. Challenges and recent progress in the design of advanced electrode materials for rechargeable Mg batteries[J]. Energy Storage Materials, 2019, 20:118-138.
    [4] TIAN Y, AN Y L, LIU C K, et al. Reversible zinc-based anodes enabled by zincophilic antimony engineered MXene for stable and dendrite-free aqueous zinc batteries[J]. Energy Storage Materials, 2021, 41:343-353.
    [5] WEI C L, TAO Y, FEI H F, et al. Recent advances and perspectives in stable and dendrite-free potassium metal anodes[J]. Energy Storage Materials, 2020, 30:206-227.
    [6] WU Z B, ZHANG H T, NAGAUMI H, et al. Effect of microstructure evolution on the discharge characteristics of Al-Mg-Sn-based anodes for Al-air batteries[J]. Journal of Power Sources, 2022, 521:230928.
    [7] XIANG J W, YANG L Y, YUAN L X, et al. Alkali-metal anodes:from lab to market[J]. Joule, 2019, 3(10):2334-2363.
    [8] 吴桦, 马北越, 苏畅, 等. 镁电池研究进展[J].稀有金属与硬质合金, 2022, 50(1):77-80.
    [9] 靳爱民. 镁电池研究的进展[J].石油炼制与化工, 2017, 48(12):67.
    [10] CHEN X Z, WEI S H, TONG F L, et al. Electrochemical performance of Mg-Sn alloy anodes for magnesium rechargeable battery[J]. ElectrochimicaActa, 2021, 398:139336.
    [11] LI D J, YUAN Y, LIU J W, et al. A review on current anode materials for rechargeable Mg batteries[J]. Journal of Magnesium and Alloys, 2020, 8(4):963-979.
    [12] SHAHJALAL M, ROY P K, SHAMS T, et al. A review on second-life of Li-ion batteries:prospects, challenges, and issues[J]. Energy, 2022, 241:122881.
    [13] LI C S, SUN Y, GEBERT F, et al. Current progress on rechargeable magnesium-air battery[J]. Adva-nced Energy Materials, 2017, 7(24):1700869.
    [14] LIU Q F, YAN Z, WANG E D,et al. A high-speci-ficenergy magnesium/water battery for fulldepth ocean application[J]. International Journal of Hydrogen Energy, 2017, 42(36):23045-23053.
    [15] DENG M, HCHE D, SNIHIROVA D, et al. Magnesium Batteries:Research and Applications[M]. London:Royal Society of Chemistry, 2019:275-308.
    [16] DENG M, WANG L Q, HOECHE D,et al. Clarifying the decisive factors for utilization efficiency of Mg anodes for primary aqueous batteries[J]. Journal of Power Sources, 2019, 441:227201.
    [17] VAGHEFINAZARI B, HOECHE D, LAMAKA S V,et al. Tailoring the Mg-air primary battery perform-ance using strong complexing agents as electrolyte additives[J]. Journal of Power Sources, 2020, 453:227880.
    [18] WANG L Q, SNIHIROVA D, DENG M, et al. Enhancement of discharge performance for aqueous Mg-air batteries in 2, 6-dihydroxybenzoate-containing electrolyte[J]. Chemical Engineering Journal, 2022, 429:132369.
    [19] WANG L Q, SNIHIROVA D, DENG M,et al. Tailoring electrolyte additives for controlled Mg-Ca anode activity in aqueous Mg-air batteries[J]. Journal of Power Sources, 2020, 460:228106.
    [20] WANG L Q, SNIHIROVA D, DENG M, et al. Indi-um chloride as an electrolyte additive for primary aqueous Mg batteries[J]. ElectrochimicaActa, 2021, 373:137916.
    [21] TONG F L, WEI S H, CHEN X Z,et al. Magnesium alloys as anodes for neutral aqueous magnesium-air batteries[J]. Journal of Magnesium and Alloys, 2021, 9(6):1861-1883.
    [22] WANG C, MEI D, WIESE G, et al. High rate oxygen reduction reaction during corrosion of ultra-high-purity magnesium[J]. Npj Materials Degradation, 2020, 4:42.
    [23] WANG C, SONG C, MEI D,et al. Low interfacial pH discloses the favorable biodegradability of several Mg alloys[J]. Corrosion Science, 2022, 197:110059.
    [24] GUSIEVA K, DAVIES C H J, SCULLY J R, et al. Corrosion of magnesium alloys:the role of alloying[J]. International Materials Reviews, 2015, 60(3):169-194.
    [25] SHRESTHA N, RAJA K S, UTGIKAR V. Mg-RE alloy anode materials for Mg-air battery application[J]. Journal of the Electrochemical Society, 2019, 166(14):A3139-A3153.
    [26] JIN Y M, BLAWERT C, YANG H, et al. Deterio-rated corrosion performance of micro-alloyed Mg-Zn alloy after heat treatment and mechanical processing[J]. Journal of Materials Science & Technology, 2021, 92:214-224.
    [27] CHEN X R, LIAO Q, LE Q,et al. The influence of samarium (Sm) on the discharge and electrochemical behaviors of the magnesium alloy AZ80 as an anode for the Mg-air battery[J]. ElectrochimicaActa, 2020, 348:136315.
    [28] CHEN X R, ZOU Q, LE Q, et al. The quasicrystal of Mg-Zn-Y on discharge and electrochemical behaviors as the anode for Mg-air battery[J]. Journal of Power Sources, 2020, 451:227807.
    [29] CHEN X R, ZOU Q, SHI Z,et al. The discharge performance of an as-extruded Mg-Zn-La-Ce anode for the primary Mg-air battery[J]. ElectrochimicaActa, 2022, 404:139763.
    [30] DENG H J, YANG Y, LI M,et al. Effect of Mn content on the microstructure and mechanical properties of Mg-6Li-4Zn-xMn alloys[J]. Progress in Natural Science:Materials International, 2021, 31(4):583-590.
    [31] DENG M, HOECHE D, LAMAKA S V,et al. Mg-Ca binary alloys as anodes for primary Mg-air batteries[J]. Journal of Power Sources, 2018, 396:109-118.
    [32] FENG Y, XIONG W H, ZHANG J C, et al. Electrochemical discharge performance of the Mg-Al-Pb-Ce-Y alloy as the anode for Mg-air batteries[J]. Jo-urnal of Materials Chemistry A, 2016, 4(22):8658-8668.
    [33] GONG C W, YAN X, HE X Z, et al. Influence of homogenization treatment on corrosion behavior and discharge performance of the Mg-2Zn-1Ca anodes for primary Mg-air batteries[J]. Materials Chemistry and Physics, 2022, 280:125802.
    [34] GU X J, CHENG W L, CHENG S M, et al. Discharge behavior of Mg-Sn-Zn-Ag alloys with different Sn contents as anodes for Mg-air batteries[J]. Journal of the Electrochemical Society, 2020, 167(2):020501.
    [35] HAN L, ZHANG Y, GUO YY, et al. Electrochemical behaviors and discharge performance of Mg-Sn binary alloys as anodes for Mg-air batteries[J]. Materials Research Express, 2021, 8(12):126531.
    [36] HUANG D Y, CAO F Y, YING T, et al. High-energy-capacity metal-air battery based on a magnetron-sputtered Mg-Al anode[J]. Journal of Power Sources, 2022, 520:230874.
    [37] TONG F L, CHEN X Z, TEOH T E, et al. Mg-Sn alloys as anodes for magnesium-air batteries[J]. Journal of the Electrochemical Society, 2021, 168(11):110531.
    [38] TONG F L CHEN X Z, WANG Q,et al. Hypoeutectic Mg-Zn binary alloys as anode materials for magnesiumair batteries[J]. Journal of Alloys and Compounds, 2021, 857:157579.
    [39] TONG F L, CHEN X Z, WEI S H, et al. Microstructure and battery performance of Mg-Zn-Sn alloys as anodes for magnesium-air battery[J]. Journal of Magnesium and Alloys, 2021, 9(6):1967-1976.
    [40] WANG N G, LI W P, HUANG Y X, et al. Wrought Mg-Al-Pb-RE alloy strips as the anodes for Mg-air batteries[J]. Journal of Power Sources, 2019, 436:226855.
    [41] WANG N G, WANG R C, FENG Y, et al. Discharge and corrosion behaviour of Mg-Li-Al-Ce-Y-Zn alloy as the anode for Mg-air battery[J]. Corrosion Science, 2016, 112:13-24.
    [42] XIAO B, SONG G L, ZHENG D, et al. A corrosion resistant Die-cast Mg-9Al-1Zn anode with superior discharge performance for Mg-air battery[J]. Materials & Design, 2020, 194:108931.
    [43] XIONG H Q, YU K, YIN X, et al. Effects of microstructure on the electrochemical discharge behavior of Mg-6wt%Al-1wt%Sn alloy as anode for Mg-air primary battery[J]. Journal of Alloys and Compounds, 2017, 708:652-661.
    [44] CHEN X R, JIA Y H, LE Q C, et al. Discharge properties and electrochemical behaviors of AZ80-La-Gd magnesium anode for Mg-air battery[J]. Journal of Magnesium and Alloys, 2021, 9(6):2113-2121.
    [45] WANG N G, HUANG Y X, LIU JJ, et al. AZ31 magnesium alloy with ultrafine grains as the anode for Mg-air battery[J]. ElectrochimicaActa, 2021, 378:138135.
    [46] LIU X, XUE J L, LIU S Z. Discharge and corrosion behaviors of the α-Mg and β-Li based Mg alloys for Mg-air batteries at different current densities[J]. Materials & Design, 2018, 160:138-146.
    [47] YANG H B, WU L, JIANG B, et al. Clarifying the roles of grain boundary and grain orientation on the corrosion and discharge processes of α-Mg based Mg-Li alloys for primary Mg-air batteries[J]. Journal of Materials Science & Technology, 2021, 62:128-138.
    [48] DENG M, HOECHE D, LAMAKA S V, et al. Revealing the impact of second phase morphology on discharge properties of binary Mg-Ca anodes for primary Mg-air batteries[J]. Corrosion Science, 2019, 153:225-235.
    [49] DENG M, WANG L Q, HOECHE D, et al. Ca/In micro alloying as a novel strategy to simultaneously enhance power and energy density of primary Mg-air batteries from anode aspect[J]. Journal of Power Sources, 2020, 472:228528.
    [50] DENG M, WANG L Q, HOECHE D, et al. Corrosion and discharge properties of Ca/Ge micro-alloyed Mg anodes for primary aqueous Mg batteries[J]. Corrosion Science, 2020, 177:108958.
    [51] GONG C W, HE X Z, FANG D Q, et al. Effect of second phases on discharge properties and corrosion behaviors of the Mg-Ca-Zn anodes for primary Mg-air batteries[J]. Journal of Alloys and Compounds, 2021, 861:158493.
    [52] LI S B, LI H, ZHAO CC, et al. Effects of Ca add-ition on microstructure, electrochemical behavior and magnesium-air battery performance of Mg-2Zn-xCa alloys[J]. Journal of Electroanalytical Chemistry, 2022, 904:115944.
    [53] MA B J, TAN C, OUYANG L Z. Microstructure and discharge performance of Mg-La alloys as the anodes for primary magnesium-air batteries[J]. Journal of Alloys and Compounds, 2022, 918:165803.
    [54] ESMAILY M, SVENSSON J E, FAJARDO S, et al. Fundamentals and advances in magnesium alloy corrosion[J]. Progress in Materials Science, 2017, 89:92-193.
    [55] THOMAS S, MEDHEKAR N V, FRANKEL G S, et al. Corrosion mechanism and hydrogen evolution on Mg[J]. Current Opinion in Solid State and Materials Science, 2015, 19(2):85-94.
    [56] LIU R L, SCULLY J R, WILLIAMS G, et al. Reducing the corrosion rate of magnesium via microalloying additions of group 14 and 15 elements[J]. ElectrochimicaActa, 2018, 260:184-195.
    [57] CHENG S M, CHENG W L, GU X J, et al. Discharge properties of low-alloyed Mg-Bi-Ca alloys as anode materials for Mg-air batteries:influence of Ca alloying[J]. Journal of Alloys and Compounds, 2020, 823:153779.
    [58] LIU X, LIU S Z, XUE J L. Discharge performance of the magnesium anodes with different phase constitutions for Mg-air batteries[J]. Journal of Power Sources, 2018, 396:667-674.
    [59] DENG M, WANG L, HÖCHE D, et al. Approaching "stainless magnesium" by Ca micro-alloying[J]. MaterialsHorizons, 2021, 8(2):589-596.
    [60] XU W, SNIHIROVA D, DENG M, et al. A mathematical model describing the surface evolution of Mg anode during discharge of aqueous Mg-air battery[J]. Journal of Power Sources, 2022, 542:231745.
    [61] CHEN Y H, CHENG W L, GU X J, et al. Discharge performance of extruded Mg-Bi binary alloys as anodes for primary Mg-air batteries[J]. Journal of Alloys and Compounds, 2021, 886:161271.
    [62] YUAN S Q, LU H M, SUN Z G, et al. Electrochemical performance of Mg-3Al modified with Ga, in and Sn as anodes for Mg-air battery[J]. Journal of the Electrochemical Society, 2016, 163(7):A1181-A1187.
    [63] ZOU Q, LE Q C, CHEN X R, et al. The influence of Ga alloying on Mg-Al-Zn alloys as anode material for Mg-air primary batteries[J]. ElectrochimicaActa, 2022, 401:139372.
    [64] CHEN X R, NING S C, LE Q, et al. Effects of external field treatment on the electrochemical behaviors and discharge performance of AZ80 anodes for Mg-air batteries[J]. Journal of Materials Science & Technology, 2020, 38:47-55.
    [65] CHEN X R, ZOU Q, LE Q C, et al. Influence of heat treatment on the discharge performance of Mg-Al and Mg-Zn alloys as anodes for the Mg-air battery[J]. Chemical Engineering Journal, 2022, 433:133797.
    [66] WANG R, FANG C F, XU Z Y,et al. Correlation of milling time with phase evolution and thermal stability of Mg-25 wt%Snalloy[J]. Journal of Alloys and Compounds, 2022, 891:162014.
    [67] CHENG W L, CHEN Y H, GU X J, et al. Revealing the influence of crystallographic orientation on the electrochemical and discharge behaviors of extruded diluted Mg-Sn-Zn-Ca alloy as anode for Mg-air battery[J]. Journal of Power Sources, 2022, 520:230802.
    [68] CHENG X Y, YUAN Y, CHEN T, et al. The effects of second-alloying-element on the formability of Mg-Sn alloys in respect of the stacking fault energies of slip systems[J]. Materials Today Communications, 2021, 29:102829.
    [69] YANG H B, LEIB, WU L, et al. Effects of texture and discharge products on the discharge performance of Mg anodes for Mg air batteries[J]. Journal of the Electrochemical Society, 2020, 167(13):130528.
    [70] GU X J, CHENG W L, CHENG S M,. Tailoring the microstructure and improving the discharge properties of dilute Mg-Sn-Mn-Ca alloy as anode for Mg-air battery through homogenization prior to extrusion[J]. Journal of Materials Science & Technology, 2021, 60:77-89.
  • 加载中
计量
  • 文章访问数:  289
  • HTML全文浏览量:  58
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-06
  • 网络出版日期:  2023-01-12

目录

    /

    返回文章
    返回