[1] |
DENG M, WANG L Q, VAGHEFINAZARI B, et al. High-energy and durable aqueous magnesium batteries:recent advances and perspectives[J]. Energy Storage Materials, 2021, 43:238-247.
|
[2] |
RASHAD M, ASIF M, WANG Y X, et al. Recent advances in electrolytes and cathode materials for magnesium and hybrid-ion batteries[J]. Energy Storage Materials, 2020, 25:342-375.
|
[3] |
ZHANG Y F, GENG H B, WEI W F, et al. Challenges and recent progress in the design of advanced electrode materials for rechargeable Mg batteries[J]. Energy Storage Materials, 2019, 20:118-138.
|
[4] |
TIAN Y, AN Y L, LIU C K, et al. Reversible zinc-based anodes enabled by zincophilic antimony engineered MXene for stable and dendrite-free aqueous zinc batteries[J]. Energy Storage Materials, 2021, 41:343-353.
|
[5] |
WEI C L, TAO Y, FEI H F, et al. Recent advances and perspectives in stable and dendrite-free potassium metal anodes[J]. Energy Storage Materials, 2020, 30:206-227.
|
[6] |
WU Z B, ZHANG H T, NAGAUMI H, et al. Effect of microstructure evolution on the discharge characteristics of Al-Mg-Sn-based anodes for Al-air batteries[J]. Journal of Power Sources, 2022, 521:230928.
|
[7] |
XIANG J W, YANG L Y, YUAN L X, et al. Alkali-metal anodes:from lab to market[J]. Joule, 2019, 3(10):2334-2363.
|
[8] |
吴桦, 马北越, 苏畅, 等. 镁电池研究进展[J].稀有金属与硬质合金, 2022, 50(1):77-80.
|
[9] |
靳爱民. 镁电池研究的进展[J].石油炼制与化工, 2017, 48(12):67.
|
[10] |
CHEN X Z, WEI S H, TONG F L, et al. Electrochemical performance of Mg-Sn alloy anodes for magnesium rechargeable battery[J]. ElectrochimicaActa, 2021, 398:139336.
|
[11] |
LI D J, YUAN Y, LIU J W, et al. A review on current anode materials for rechargeable Mg batteries[J]. Journal of Magnesium and Alloys, 2020, 8(4):963-979.
|
[12] |
SHAHJALAL M, ROY P K, SHAMS T, et al. A review on second-life of Li-ion batteries:prospects, challenges, and issues[J]. Energy, 2022, 241:122881.
|
[13] |
LI C S, SUN Y, GEBERT F, et al. Current progress on rechargeable magnesium-air battery[J]. Adva-nced Energy Materials, 2017, 7(24):1700869.
|
[14] |
LIU Q F, YAN Z, WANG E D,et al. A high-speci-ficenergy magnesium/water battery for fulldepth ocean application[J]. International Journal of Hydrogen Energy, 2017, 42(36):23045-23053.
|
[15] |
DENG M, HCHE D, SNIHIROVA D, et al. Magnesium Batteries:Research and Applications[M]. London:Royal Society of Chemistry, 2019:275-308.
|
[16] |
DENG M, WANG L Q, HOECHE D,et al. Clarifying the decisive factors for utilization efficiency of Mg anodes for primary aqueous batteries[J]. Journal of Power Sources, 2019, 441:227201.
|
[17] |
VAGHEFINAZARI B, HOECHE D, LAMAKA S V,et al. Tailoring the Mg-air primary battery perform-ance using strong complexing agents as electrolyte additives[J]. Journal of Power Sources, 2020, 453:227880.
|
[18] |
WANG L Q, SNIHIROVA D, DENG M, et al. Enhancement of discharge performance for aqueous Mg-air batteries in 2, 6-dihydroxybenzoate-containing electrolyte[J]. Chemical Engineering Journal, 2022, 429:132369.
|
[19] |
WANG L Q, SNIHIROVA D, DENG M,et al. Tailoring electrolyte additives for controlled Mg-Ca anode activity in aqueous Mg-air batteries[J]. Journal of Power Sources, 2020, 460:228106.
|
[20] |
WANG L Q, SNIHIROVA D, DENG M, et al. Indi-um chloride as an electrolyte additive for primary aqueous Mg batteries[J]. ElectrochimicaActa, 2021, 373:137916.
|
[21] |
TONG F L, WEI S H, CHEN X Z,et al. Magnesium alloys as anodes for neutral aqueous magnesium-air batteries[J]. Journal of Magnesium and Alloys, 2021, 9(6):1861-1883.
|
[22] |
WANG C, MEI D, WIESE G, et al. High rate oxygen reduction reaction during corrosion of ultra-high-purity magnesium[J]. Npj Materials Degradation, 2020, 4:42.
|
[23] |
WANG C, SONG C, MEI D,et al. Low interfacial pH discloses the favorable biodegradability of several Mg alloys[J]. Corrosion Science, 2022, 197:110059.
|
[24] |
GUSIEVA K, DAVIES C H J, SCULLY J R, et al. Corrosion of magnesium alloys:the role of alloying[J]. International Materials Reviews, 2015, 60(3):169-194.
|
[25] |
SHRESTHA N, RAJA K S, UTGIKAR V. Mg-RE alloy anode materials for Mg-air battery application[J]. Journal of the Electrochemical Society, 2019, 166(14):A3139-A3153.
|
[26] |
JIN Y M, BLAWERT C, YANG H, et al. Deterio-rated corrosion performance of micro-alloyed Mg-Zn alloy after heat treatment and mechanical processing[J]. Journal of Materials Science & Technology, 2021, 92:214-224.
|
[27] |
CHEN X R, LIAO Q, LE Q,et al. The influence of samarium (Sm) on the discharge and electrochemical behaviors of the magnesium alloy AZ80 as an anode for the Mg-air battery[J]. ElectrochimicaActa, 2020, 348:136315.
|
[28] |
CHEN X R, ZOU Q, LE Q, et al. The quasicrystal of Mg-Zn-Y on discharge and electrochemical behaviors as the anode for Mg-air battery[J]. Journal of Power Sources, 2020, 451:227807.
|
[29] |
CHEN X R, ZOU Q, SHI Z,et al. The discharge performance of an as-extruded Mg-Zn-La-Ce anode for the primary Mg-air battery[J]. ElectrochimicaActa, 2022, 404:139763.
|
[30] |
DENG H J, YANG Y, LI M,et al. Effect of Mn content on the microstructure and mechanical properties of Mg-6Li-4Zn-xMn alloys[J]. Progress in Natural Science:Materials International, 2021, 31(4):583-590.
|
[31] |
DENG M, HOECHE D, LAMAKA S V,et al. Mg-Ca binary alloys as anodes for primary Mg-air batteries[J]. Journal of Power Sources, 2018, 396:109-118.
|
[32] |
FENG Y, XIONG W H, ZHANG J C, et al. Electrochemical discharge performance of the Mg-Al-Pb-Ce-Y alloy as the anode for Mg-air batteries[J]. Jo-urnal of Materials Chemistry A, 2016, 4(22):8658-8668.
|
[33] |
GONG C W, YAN X, HE X Z, et al. Influence of homogenization treatment on corrosion behavior and discharge performance of the Mg-2Zn-1Ca anodes for primary Mg-air batteries[J]. Materials Chemistry and Physics, 2022, 280:125802.
|
[34] |
GU X J, CHENG W L, CHENG S M, et al. Discharge behavior of Mg-Sn-Zn-Ag alloys with different Sn contents as anodes for Mg-air batteries[J]. Journal of the Electrochemical Society, 2020, 167(2):020501.
|
[35] |
HAN L, ZHANG Y, GUO YY, et al. Electrochemical behaviors and discharge performance of Mg-Sn binary alloys as anodes for Mg-air batteries[J]. Materials Research Express, 2021, 8(12):126531.
|
[36] |
HUANG D Y, CAO F Y, YING T, et al. High-energy-capacity metal-air battery based on a magnetron-sputtered Mg-Al anode[J]. Journal of Power Sources, 2022, 520:230874.
|
[37] |
TONG F L, CHEN X Z, TEOH T E, et al. Mg-Sn alloys as anodes for magnesium-air batteries[J]. Journal of the Electrochemical Society, 2021, 168(11):110531.
|
[38] |
TONG F L CHEN X Z, WANG Q,et al. Hypoeutectic Mg-Zn binary alloys as anode materials for magnesiumair batteries[J]. Journal of Alloys and Compounds, 2021, 857:157579.
|
[39] |
TONG F L, CHEN X Z, WEI S H, et al. Microstructure and battery performance of Mg-Zn-Sn alloys as anodes for magnesium-air battery[J]. Journal of Magnesium and Alloys, 2021, 9(6):1967-1976.
|
[40] |
WANG N G, LI W P, HUANG Y X, et al. Wrought Mg-Al-Pb-RE alloy strips as the anodes for Mg-air batteries[J]. Journal of Power Sources, 2019, 436:226855.
|
[41] |
WANG N G, WANG R C, FENG Y, et al. Discharge and corrosion behaviour of Mg-Li-Al-Ce-Y-Zn alloy as the anode for Mg-air battery[J]. Corrosion Science, 2016, 112:13-24.
|
[42] |
XIAO B, SONG G L, ZHENG D, et al. A corrosion resistant Die-cast Mg-9Al-1Zn anode with superior discharge performance for Mg-air battery[J]. Materials & Design, 2020, 194:108931.
|
[43] |
XIONG H Q, YU K, YIN X, et al. Effects of microstructure on the electrochemical discharge behavior of Mg-6wt%Al-1wt%Sn alloy as anode for Mg-air primary battery[J]. Journal of Alloys and Compounds, 2017, 708:652-661.
|
[44] |
CHEN X R, JIA Y H, LE Q C, et al. Discharge properties and electrochemical behaviors of AZ80-La-Gd magnesium anode for Mg-air battery[J]. Journal of Magnesium and Alloys, 2021, 9(6):2113-2121.
|
[45] |
WANG N G, HUANG Y X, LIU JJ, et al. AZ31 magnesium alloy with ultrafine grains as the anode for Mg-air battery[J]. ElectrochimicaActa, 2021, 378:138135.
|
[46] |
LIU X, XUE J L, LIU S Z. Discharge and corrosion behaviors of the α-Mg and β-Li based Mg alloys for Mg-air batteries at different current densities[J]. Materials & Design, 2018, 160:138-146.
|
[47] |
YANG H B, WU L, JIANG B, et al. Clarifying the roles of grain boundary and grain orientation on the corrosion and discharge processes of α-Mg based Mg-Li alloys for primary Mg-air batteries[J]. Journal of Materials Science & Technology, 2021, 62:128-138.
|
[48] |
DENG M, HOECHE D, LAMAKA S V, et al. Revealing the impact of second phase morphology on discharge properties of binary Mg-Ca anodes for primary Mg-air batteries[J]. Corrosion Science, 2019, 153:225-235.
|
[49] |
DENG M, WANG L Q, HOECHE D, et al. Ca/In micro alloying as a novel strategy to simultaneously enhance power and energy density of primary Mg-air batteries from anode aspect[J]. Journal of Power Sources, 2020, 472:228528.
|
[50] |
DENG M, WANG L Q, HOECHE D, et al. Corrosion and discharge properties of Ca/Ge micro-alloyed Mg anodes for primary aqueous Mg batteries[J]. Corrosion Science, 2020, 177:108958.
|
[51] |
GONG C W, HE X Z, FANG D Q, et al. Effect of second phases on discharge properties and corrosion behaviors of the Mg-Ca-Zn anodes for primary Mg-air batteries[J]. Journal of Alloys and Compounds, 2021, 861:158493.
|
[52] |
LI S B, LI H, ZHAO CC, et al. Effects of Ca add-ition on microstructure, electrochemical behavior and magnesium-air battery performance of Mg-2Zn-xCa alloys[J]. Journal of Electroanalytical Chemistry, 2022, 904:115944.
|
[53] |
MA B J, TAN C, OUYANG L Z. Microstructure and discharge performance of Mg-La alloys as the anodes for primary magnesium-air batteries[J]. Journal of Alloys and Compounds, 2022, 918:165803.
|
[54] |
ESMAILY M, SVENSSON J E, FAJARDO S, et al. Fundamentals and advances in magnesium alloy corrosion[J]. Progress in Materials Science, 2017, 89:92-193.
|
[55] |
THOMAS S, MEDHEKAR N V, FRANKEL G S, et al. Corrosion mechanism and hydrogen evolution on Mg[J]. Current Opinion in Solid State and Materials Science, 2015, 19(2):85-94.
|
[56] |
LIU R L, SCULLY J R, WILLIAMS G, et al. Reducing the corrosion rate of magnesium via microalloying additions of group 14 and 15 elements[J]. ElectrochimicaActa, 2018, 260:184-195.
|
[57] |
CHENG S M, CHENG W L, GU X J, et al. Discharge properties of low-alloyed Mg-Bi-Ca alloys as anode materials for Mg-air batteries:influence of Ca alloying[J]. Journal of Alloys and Compounds, 2020, 823:153779.
|
[58] |
LIU X, LIU S Z, XUE J L. Discharge performance of the magnesium anodes with different phase constitutions for Mg-air batteries[J]. Journal of Power Sources, 2018, 396:667-674.
|
[59] |
DENG M, WANG L, HÖCHE D, et al. Approaching "stainless magnesium" by Ca micro-alloying[J]. MaterialsHorizons, 2021, 8(2):589-596.
|
[60] |
XU W, SNIHIROVA D, DENG M, et al. A mathematical model describing the surface evolution of Mg anode during discharge of aqueous Mg-air battery[J]. Journal of Power Sources, 2022, 542:231745.
|
[61] |
CHEN Y H, CHENG W L, GU X J, et al. Discharge performance of extruded Mg-Bi binary alloys as anodes for primary Mg-air batteries[J]. Journal of Alloys and Compounds, 2021, 886:161271.
|
[62] |
YUAN S Q, LU H M, SUN Z G, et al. Electrochemical performance of Mg-3Al modified with Ga, in and Sn as anodes for Mg-air battery[J]. Journal of the Electrochemical Society, 2016, 163(7):A1181-A1187.
|
[63] |
ZOU Q, LE Q C, CHEN X R, et al. The influence of Ga alloying on Mg-Al-Zn alloys as anode material for Mg-air primary batteries[J]. ElectrochimicaActa, 2022, 401:139372.
|
[64] |
CHEN X R, NING S C, LE Q, et al. Effects of external field treatment on the electrochemical behaviors and discharge performance of AZ80 anodes for Mg-air batteries[J]. Journal of Materials Science & Technology, 2020, 38:47-55.
|
[65] |
CHEN X R, ZOU Q, LE Q C, et al. Influence of heat treatment on the discharge performance of Mg-Al and Mg-Zn alloys as anodes for the Mg-air battery[J]. Chemical Engineering Journal, 2022, 433:133797.
|
[66] |
WANG R, FANG C F, XU Z Y,et al. Correlation of milling time with phase evolution and thermal stability of Mg-25 wt%Snalloy[J]. Journal of Alloys and Compounds, 2022, 891:162014.
|
[67] |
CHENG W L, CHEN Y H, GU X J, et al. Revealing the influence of crystallographic orientation on the electrochemical and discharge behaviors of extruded diluted Mg-Sn-Zn-Ca alloy as anode for Mg-air battery[J]. Journal of Power Sources, 2022, 520:230802.
|
[68] |
CHENG X Y, YUAN Y, CHEN T, et al. The effects of second-alloying-element on the formability of Mg-Sn alloys in respect of the stacking fault energies of slip systems[J]. Materials Today Communications, 2021, 29:102829.
|
[69] |
YANG H B, LEIB, WU L, et al. Effects of texture and discharge products on the discharge performance of Mg anodes for Mg air batteries[J]. Journal of the Electrochemical Society, 2020, 167(13):130528.
|
[70] |
GU X J, CHENG W L, CHENG S M,. Tailoring the microstructure and improving the discharge properties of dilute Mg-Sn-Mn-Ca alloy as anode for Mg-air battery through homogenization prior to extrusion[J]. Journal of Materials Science & Technology, 2021, 60:77-89.
|