留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光选区熔化ZrO2/AlSi10Mg复合材料热处理显微组织与力学性能

孙苗 杨倩 华文娟 张建勋

孙苗, 杨倩, 华文娟, 张建勋. 激光选区熔化ZrO2/AlSi10Mg复合材料热处理显微组织与力学性能[J]. 材料开发与应用, 2024, 39(1): 38-46.
引用本文: 孙苗, 杨倩, 华文娟, 张建勋. 激光选区熔化ZrO2/AlSi10Mg复合材料热处理显微组织与力学性能[J]. 材料开发与应用, 2024, 39(1): 38-46.
SUN Miao, YANG Qian, HUA Wenjuan, ZHANG Jianxun. Microstructure and Performance Evolution of Heat-Treated ZrO2/AlSi10Mg Composites Processed by Selective Laser Melting[J]. Development and Application of Materials, 2024, 39(1): 38-46.
Citation: SUN Miao, YANG Qian, HUA Wenjuan, ZHANG Jianxun. Microstructure and Performance Evolution of Heat-Treated ZrO2/AlSi10Mg Composites Processed by Selective Laser Melting[J]. Development and Application of Materials, 2024, 39(1): 38-46.

激光选区熔化ZrO2/AlSi10Mg复合材料热处理显微组织与力学性能

基金项目: 

民用航天预研项目(D020302)

详细信息
    作者简介:

    孙苗,女,1991年生,硕士,工程师,主要研究方向为SLM增材制造技术。E-mail:1172054539@qq.com

    通讯作者:

    张建勋,男,1962年生,教授,主要研究方向为先进材料接合与连接技术。E-mail:jxzhang@mail.xjtu.edu.cn

  • 中图分类号: TG156

Microstructure and Performance Evolution of Heat-Treated ZrO2/AlSi10Mg Composites Processed by Selective Laser Melting

  • 摘要: AlSi10Mg作为增材制造最为常用的铝合金材料,其激光选区熔化(SLM)制品已经广泛应用于航空航天、汽车工业等领域,但较低的强度和塑性限制了其应用范围的扩展。本研究通过在AlSi10Mg合金气雾化粉末中添加0.3%(质量分数)纳米ZrO2颗粒,采用SLM技术成形ZrO2/AlSi10Mg复合材料,研究不同热处理制度下其组织及性能演化规律和性能各向异性行为。结果表明,复合材料的抗拉强度随热处理温度(180 ℃~270 ℃)提高持续下降,伸长率随着热处理温度的提高先降低后升高,180 ℃/2 h退火后ZrO2/AlSi10Mg表现出最佳的强塑性匹配,此时抗拉强度为481.74 MPa,屈服强度为331.03 MPa,伸长率为8.56%;在热处理过程中,复合材料中ZrO2陶瓷颗粒保持着稳定的结构,热处理相变为AlSi10Mg基体的相变;此外,随着热处理温度的提高,ZrO2/AlSi10Mg复合材料的大角度晶界比例显著增加,平均局部取向差减小;ZrO2/AlSi10Mg复合材料180 ℃/2 h热处理后,横向和纵向抗拉强度及伸长率均显著优于对应取向的AlSi10Mg合金的。

     

  • [1] 秦艳利, 孙博慧, 张昊, 等. 选区激光熔化铝合金及其复合材料在航空航天领域的研究进展[J]. 中国激光, 2021, 48(14): 1402002.
    [2] 邹田春, 欧尧, 祝贺, 等. 激光选区熔化AlSi7Mg合金的微观组织和力学性能[J]. 材料导报, 2020, 34(10)10098-10102
    [3] 唐光东, 冯涛, 段国庆, 等. AlSi7Mg合金选区激光熔化工艺及性能研究[J]. 铸造技术, 2020, 41(3): 219-222.
    [4] 王孟, 杨永强, Vyacheslav Trofimov, 等. 粉末粒径对AlSi10Mg合金选区激光熔化成形的影响[J]. 金属学报, 2023, 59(1): 147-156.
    [5] 闫泰起, 唐鹏钧, 陈冰清, 等. 退火温度对激光选区熔化AlSi10Mg合金微观组织及拉伸性能的影响[J]. 机械工程学报, 2020, 56(8): 37-45.
    [6] 侯伟, 陈静, 储松林, 等. 选区激光熔化成形AlSi10Mg组织与拉伸性能的各向异性研究[J]. 中国激光, 2018, 45(7): 0702003.
    [7] 孙兵兵, 房立家, 张学军. 激光选区熔化AlSi10Mg工艺优化及显微组织研究[J]. 焊接技术, 2020, 49(2): 5-8.
    [8] 帅三三, 林鑫, 肖武泉, 等. 横向静磁场对激光熔化增材制造Al-12%Si合金凝固组织的影响[J]. 金属学报, 2018, 54(6): 918-926.
    [9] 孙靖, 吴俊, 朱忠良, 等. 激光能量密度对选区激光熔化成形Al4SiC4/AlSi10Mg复合材料显微组织的影响[J]. 机械工程材料, 2022, 46(8): 68-74.
    [10] YANASE Y, MIYAUCHI H, MATSUMOTO H, et al. Hierarchical analysis of phase constituent and mechanical properties of AlSi10Mg/SiC composite produced by laser-based powder bed fusion[J]. Materials Transactions, 2023, 64(6): 1125-1134.
    [11] WANG Z Y, ZHUO L C, YIN E H, et al. Microstructure evolution and properties of nanoparticulate SiC modified AlSi10Mg alloys[J]. Materials Science and Engineering: A, 2021, 808: 140864.
    [12] ZHANG S Z, WEI P, CHEN Z, et al. Graphene/ZrO2/aluminum alloy composite with enhanced strength and ductility fabricated by laser powder bed fusion[J]. Journal of Alloys and Compounds, 2022, 910: 164941.
    [13] LUO S X, LI R F, HE P Y, et al. Investigation on the microstructure and mechanical properties of CNTs-AlSi10Mg composites fabricated by selective laser melting[J]. Materials, 2021, 14(4): 838.
    [14] 饶项炜, 顾冬冬, 席丽霞. 选区激光熔化成形碳纳米管增强铝基复合材料成形机制及力学性能研究[J]. 机械工程学报, 2019, 55(15): 1-9.
    [15] ZHANG Y Y, LI X D. Bioinspired, graphene/Al2O3 doubly reinforced aluminum composites with high strength and toughness[J]. Nano Letters, 2017, 17(11): 6907-6915.
    [16] 张堃, 吴姚莎, 刘晓飞, 等. TiB2/AlSi10Mg选区激光熔化成形组织与性能[J]. 有色金属工程, 2021, 11(12): 43-49.
    [17] 荣婷, 任治倪, 曾志强, 等. 选区激光熔化高强铝合金TiB2/AlSi10Mg显微组织及力学性能研究[J]. 应用激光, 2020, 40(6): 1017-1022.
    [18] WU K W, MA S M, FANG X, et al. Microstructure and mechanical properties of an in situ TiB2 particle reinforced AlSi10Mg composite additive manufactured by selective electron beam melting[J].Journal of Materials Science, 2023, 58(19): 7915-7929.
    [19] YUAN P P, GU D D. Molten pool behaviour and its physical mechanism during selective laser melting of TiC/AlSi10Mg nanocomposites: simulation and experiments[J]. Journal of Physics D: Applied Physics, 2015, 48(3): 035303.
    [20] GAO C, LIU Z, XIAO Z, et al. Effect of heat treatment on SLM-fabricated TiN/AlSi10Mg composites: Microstructural evolution and mechanical properties[J]. Journal of Alloys and Compounds, 2021, 853: 156722.
    [21] 李冲. 铝合金中Mg2Si相演变行为及析出长大机制的研究[D]. 济南: 山东大学, 2012.
    [22] 龙慧池. Al-Si-(Mg)合金热处理对微观结构与宏观性能的影响[D]. 长沙: 湖南大学, 2013.
    [23] TAN Q Y, ZHANG J Q, NING M, et al. A novel method to 3D-print fine-grained AlSi10Mg alloy with isotropic properties via inoculation with LaB6 nanoparticles[J]. Additive Manufacturing, 2020, 32: 101034.
  • 加载中
计量
  • 文章访问数:  71
  • HTML全文浏览量:  16
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-03

目录

    /

    返回文章
    返回