留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

材料前沿测试表征技术及其在船舶材料领域的应用展望

刘晓勇 陈洁明 房坤 刘攀 徐魁龙 罗先甫 陈沛 杜卓同 高琛 查小琴 张欣耀

刘晓勇, 陈洁明, 房坤, 刘攀, 徐魁龙, 罗先甫, 陈沛, 杜卓同, 高琛, 查小琴, 张欣耀. 材料前沿测试表征技术及其在船舶材料领域的应用展望[J]. 材料开发与应用, 2022, 37(6): 1-11,101.
引用本文: 刘晓勇, 陈洁明, 房坤, 刘攀, 徐魁龙, 罗先甫, 陈沛, 杜卓同, 高琛, 查小琴, 张欣耀. 材料前沿测试表征技术及其在船舶材料领域的应用展望[J]. 材料开发与应用, 2022, 37(6): 1-11,101.
LIU Xiaoyong, CHEN Jieming, FANG Kun, LIU Pan, XU Kuilong, LUO Xianfu, CHEN Pei, DU Zhuotong, GAO Chen, ZHA Xiaoqin, ZHANG Yaoxin. Development of Material Characterization Techniques and Their Future Applications in Ship Material[J]. Development and Application of Materials, 2022, 37(6): 1-11,101.
Citation: LIU Xiaoyong, CHEN Jieming, FANG Kun, LIU Pan, XU Kuilong, LUO Xianfu, CHEN Pei, DU Zhuotong, GAO Chen, ZHA Xiaoqin, ZHANG Yaoxin. Development of Material Characterization Techniques and Their Future Applications in Ship Material[J]. Development and Application of Materials, 2022, 37(6): 1-11,101.

材料前沿测试表征技术及其在船舶材料领域的应用展望

详细信息
    作者简介:

    刘晓勇,男,博士,高级工程师。E-mail:liuxiaoyongsjtu@163.com

  • 中图分类号: TG142

Development of Material Characterization Techniques and Their Future Applications in Ship Material

  • 摘要: 材料测试表征技术是了解材料宏观和微观特征、剖析材料科学问题、进行材料应用评价的基础,测试表征技术的发展极大地加速了材料科学重大发现和重要理论创新的进程,密切跟踪测试表征技术前沿动态并尝试在科研生产中加以运用是材料研究的主要创新途径。通过了解材料基础研究和工程应用所关注的关键性能特征(如力学性能、化学成分、微观特征、疲劳性能、腐蚀性能等)的测试表征技术的发展现状,并分析前沿测试表征技术在船舶材料中的应用前景,为船舶领域的材料研制和工程应用研究提供参考。

     

  • [1] LARA-CURZIO E, STERNSTEIN S S. A high-temperature fibre testing facility[J]. Measurement Science and Technology, 1991, 2(4):358-368.
    [2] LINK R, VÖLKL R, FREUND D, et al. Economical creep testing of ultrahigh-temperature alloys[J]. Journal of Testing and Evaluation, 2003, 31(1):35-43.
    [3] LI X Y. A technique for ultrahigh temperature oxid-ation studies of ZrB2-SiC[J]. Materials Letters, 2008, 62(17-18):2848-2850.
    [4] SHUGART K, OPILA E. SiC depletion in ZrB2-30 vol% SiC at ultrahigh temperatures[J]. Journal of the American Ceramic Society, 2015, 98(5):1673-1683.
    [5] GANGIREDDY S. Non-contact mechanical property measurements at ultrahigh temperatures[J]. Journal of the European Ceramic Society, 2010, 30(11):2183-2189.
    [6] GANGIREDDY S. Flexural creep of zirconium dibo-ridesilicon carbide up to 2200℃ in minutes with no-ncontact electromagnetic testing[J]. Journal of the European Ceramic Society, 2013, 33(15-16):2901-2908.
    [7] CODRINGTON J. Induction heating apparatus for high temperature testing of thermo-mechanical properties[J]. Applied Thermal Engineering, 2009, 29(14-15):2783-2789.
    [8] VÖLKL R, FISCHER B. Mechanical testing of ultra-high temperature alloys[J]. Experimental Mechanics, 2004, 44(2):121-127.
    [9] OHTANI T, OHTSU Y, SHIKI N, et al. Performance test of new re-condensing type cooling system designed for fatigue testing machine at liquid helium temperature[M]Proceedings of the Ninth Internati-onal Cryogenic Engineering Conference, Kobe, Jap-an, 11-14 May 1982. Amsterdam:Elsevier, 1982:604-607.
    [10] 吴英哲, 郑津洋, 陶杨吉, 等. 基于低温制冷机和冷媒循环的液氢温区材料力学测试平台:CN109297804A. 2019-02-01.
    [11] NAGAI Y, NAMAZU T, ARAKI N, et al. Development of bi-axial tensile tester to investigate yield locus for aluminum film under multi-axial stresses[C]2008 IEEE 21st International Conference on Micro Electro Mechanical Systems. Tucson, AZ, USA. IEEE,:443-446.
    [12] ZHOU J J, PAN J L, LEUNG C K Y, et al. Experimental study on mechanical behavior of high performance concrete under multi-axial compressive stress[J]. Science China Technological Sciences, 2014, 57(12):2514-2522.
    [13] KHOSHBAKHT M. Failure of woven composites under combined tension-bending loading[J]. Composite Structures, 2009, 90(3):279-286.
    [14] HALTOM S S, KYRIAKIDES S, RAVI-CHANDAR K. Ductile failure under combined shear and tension[J]. International Journal of Solids and Structures, 2013, 50(10):1507-1522.
    [15] PAPASIDERO J, DOQUET V, MOHR D. Determination of the effect of stress state on the onset of ductile fracture through tension-torsion experiments[J]. Experimental Mechanics, 2014, 54(2):137-151.
    [16] BONTEMPI E, ZANOLA P, GELFI M, et al. Elastic behaviour of titanium dioxide films on polyimide substrates studied by in situ tensile testing in a X-ray diffractometer[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions With Materials and Atoms, 2010, 268(3-4):365-369.
    [17] 高景. 拉伸-剪切复合载荷原位力学测试装置设计分析与试验研究[D]. 长春:吉林大学, 2015.
    [18] 杜米芳, 聂富强, 杜丽丽, 等. 电感耦合等离子体原子发射光谱法测定船用钢中砷锡锑[J]. 冶金分析, 2017, 37(2):70-75.
    [19] 杜米芳, 杜丽丽, 刘攀, 等. 电感耦合等离子体原子发射光谱法测定铝-锌-铟系合金牺牲阳极中9种元素[J]. 冶金分析, 2015, 35(8):55-60.
    [20] WAGATSUMA K. Direct analysis of tramp elements in steel by radio-frequency glow discharge optical emission spectrometry associated with bias-current introduction[J]. Tetsu-to-Hagane, 2002, 88(10):694-698.
    [21] SHIMAZAKI K, SATOH K, WAGATSUMA K. Emission spectrometric evaluation of a hollow-cathode glow discharge plasma with helium-oxygen mixed gas for surface modification of Co-Cr-Mo alloy[J]. Plasma Chemistry and Plasma Processing, 2017, 37(4):1265-1279.
    [22] 梁家伟, 韩逸山, 庄素娜, 等. 辉光放电发射光谱在材料成分-深度分析中的应用[J]. 真空, 2017, 54(5):39-46.
    [23] 许铖, 李芳, 陈锋, 等. 钛合金的激光诱导击穿光谱快速分类[J]. 光子学报, 2022, 51(4):184-194.
    [24] 李文鑫, 陈光辉, 曾庆栋, 等. 光纤传能的移动式激光诱导击穿光谱钢铁快速检测与分类[J]. 光谱学与光谱分析, 2021, 41(8):2638-2643.
    [25] 郭美亭, 孙兰香, 董伟, 等. 基于激光诱导击穿光谱技术的废旧金属分类辨识[J]. 冶金分析, 2020, 40(12):72-78.
    [26] 刘旭阳, 张大成, 冯中琦, 等. 基于远程激光诱导击穿光谱技术的航空合金鉴别[J]. 光子学报, 2021, 50(10):173-180.
    [27] LIU J, JIA Y H, ZHANG Y, et al. Determination of the insoluble aluminum content in steel samples by using laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2015, 17(8):644-648.
    [28] YANG C, JIA Y H, ZHANG Y, et al. Characteriz-ation of the delamination defects in marine steel using laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2015, 17(8):671-675.
    [29] KARANDASHEV V K, ZHERNOKLEEVA K V, BA-RANOVSKAYA V B, et al. Analysis of highpurity materials by inductively coupled plasma mass spectrometry (Review)[J]. Inorganic Materials, 2013, 49(14):1249-1263.
    [30] 赵艳兵, 赵琎, 胡建春, 等. 电感耦合等离子体质谱法测定铁基非晶合金中痕量铝[J]. 冶金分析, 2016, 36(7):79-82.
    [31] ALEKSEEV A V, YAKIMOVICH P V. Determination of impurities in magnesium alloys by inductively coupled plasma mass spectrometry[J].Measurement Techniques, 2019, 62(8):741-745.
    [32] PUTYERA K, BOYEA N, CUQ N, 等. 利用高分辨辉光放电质谱技术对难熔金属材料进行痕量元素定量和深度剖面分析[J]. 冶金分析, 2010, 30(2):1-7.
    [33] 王爽, 白杉, 徐平, 等. 辉光放电质谱法在高纯材料分析中的应用[J]. 中国无机分析化学, 2019, 9(2):24-34.
    [34] GAO W, HUANG Z X, NIAN H Q, et al. A novel gas analysis system for metallurgical materials based on time-of-flight mass spectrometry[J]. International Journal of Mass Spectrometry, 2010, 294(2-3):77-82.
    [35] WANG H Z, ZHAO L, JIA Y H, et al. State-of-the-art review of high-throughput statistical spatial-mapping characterization technology and its applications[J]. Engineering, 2020(6):621-636.
    [36] 贾云海, 袁良经, 于雷, 等. 大尺寸金属构件原位分析仪器研制与应用[J]. 冶金分析, 2021, 41(12):4-17.
    [37] KONG Y, BENNETT C, HYDE C J. A review of non-destructive testing techniques for the in situ investigation of fretting fatigue cracks[J]. Materials and Design, 2020, 196(1):109093.
    [38] BJØRHEIM F, SIRIWARDANE S C, PAVLOU D. A review of fatigue damage detection and measurement techniques[J]. International Journal of Fatigue, 2022, 154:106556.
    [39] ZHU X K. Review of fracture toughness test methods for ductile materials in low-constraint conditions[J]. International Journal of Pressure Vessels and Piping, 2016, 139-140:173-183.
    [40] 杨卫. 宏微观断裂力学[M]. 北京:国防工业出版社, 1995.
    [41] 杜永, 马玉娥, 刘君伍. 拉伸载荷下机身整体复合材料接头的断裂损伤研究[J]. 西北工业大学学报, 2021, 39(4):739-746.
    [42] 陈鹏达. 基于红外热成像法5A06铝合金疲劳行为各向异性研究[D]. 太原:太原理工大学, 2015.
    [43] 张志强, 王萍, 赵三军, 等. 目标距离与角度对红外热成像仪测温精度影响分析[J]. 天津大学学报(自然科学与工程技术版), 2021, 54(7):763-770.
    [44] 王博正, 董丽虹, 王海斗, 等. 激光红外热成像技术在材料缺陷检测中的研究和应用现状[J]. 材料导报, 2020, 34(5):5127-5132.
    [45] 冯辅周, 张超省, 宋爱斌, 等. 超声红外热像检测中疲劳裂纹的检出概率模型研究[J]. 红外与激光工程, 2016, 45(3):60-65.
    [46] BURROWS S E, RASHED A, ALMOND D P, et al. Combined laser spot imaging thermography and ultrasonic measurements for crack detection[J]. Nondestructive Testing and Evaluation, 2007, 22(2-3):217-227.
    [47] LI T, ALMOND D P, REES D, et al. Crack imaging by scanning pulsed laser spot thermography[J]. NDT & E International, 2011, 44(2):216-225.
    [48] PARK J H, MAN S M, KIM Y J, et al. Tensile and high cycle fatigue test of Al-3% Ti thin films[J]. Sensors and Actuators A:Physical, 2008, 147(2):561-569.
    [49] 马志超. 块体材料原位拉伸-疲劳测试理论与试验研究[D]. 长春:吉林大学, 2013.
    [50] BAMBERG E, GRIPPO C P, WANAKAMOL P, et al. A tensile test device for insitu atomic force microscope mechanical testing[J]. Precision Engineering, 2006, 30(1):71-84.
    [51] LUDWIG W, BUFFIERE J Y, SAVELLI S. Study of the interaction of a short fatigue crack with grain boundaries in a cast Al alloy using X-ray microtomography[J]. Acta Materialia, 2003, 51(3):585-598.
    [52] 张思齐. 基于同步辐射X射线三维成像的原位疲劳试验机开发及应用[D]. 成都:西南交通大学, 2017.
    [53] ZHANG H C, DONG X, HUANG R, et al. Liquid helium free mechanical property test system with G-M cryocoolers[J]. Cryogenics, 2017, 85:58-62.
    [54] BAGRETS N, WEISS E, WESTENFELDER S, et al. Cryogenic test facility CryoMaK[J]. IEEE Transactions on Applied Superconductivity, 2012, 22(3):9501204.
    [55] PARK W S. Comparative study on mechanical behavior of low temperature application materials for ships and offshore structures:part II-Constitutive model[J]. Materials Science and Engineering:A, 2011, 528(25-26):7560-7569.
    [56] 刘佳琦. 环境因素对T700/HT280复合材料力学性能的影响[D]. 沈阳:沈阳航空航天大学, 2017.
    [57] 王付胜, 孔繁淇, 王文平, 等. 航空铝合金原位腐蚀疲劳性能及断裂机理[J]. 材料工程, 2022, 50(6):149-156.
    [58] LIU D, LIU J, WU S C, et al. Corrosion fatiguecrac-king behaviors of low alloy steels in seawater for offshore engineering structures[J]. Metallurgical and Materials Transactions A, 2022, 53(7):2369-2382.
    [59] 赵鹏雄, 武玮, 淡勇. 空间分辨技术在金属腐蚀原位监测中的应用[J]. 中国腐蚀与防护学报, 2020, 40(6):495-507.
    [60] 钱兆红. 铝在中性介质中腐蚀特性的电化学和原位SECM研究[D]. 济南:山东大学, 2012.
    [61] YUAN Y, LI L, WANG C, et al. Study of the effects of hydrogen on the pitting processes of X70 carbon steel with SECM[J]. Electrochemistry Communications, 2010, 12(12):1804-1807.
    [62] ZHU R K, LUO J L. Investigation of stress-enhanced surface reactivity on Alloy 800 using scanning electrochemical microscopy[J]. Electrochemistry Communications, 2010, 12(12):1752-1755.
    [63] SHI Y Z, COLLINS L, BALKE N, et al. Insitu electrochemical-AFM study of localized corrosion of AlxCoCrFeNi high-entropy alloys in chloride solution[J]. Applied Surface Science, 2018, 439:533-544.
    [64] 赵鹏雄. AZ91镁合金应力腐蚀性能原位研究[D]. 西安:西北大学, 2020.
    [65] BOLIVAR J, NGUYEN T T, SHI Y, et al. Evalu-ation of multiple stress corrosion crack interactions by insitu Digital Image Correlation[J]. Corrosion Science, 2017, 128:120-129.
    [66] YUAN B Y, LI Z H, TONG S, et al. Insitu mo-nitoring of pitting corrosion on stainless steel with digital holographic surface imaging[J]. Journal of the Electrochemical Society, 2019, 166(11):C3039-C3047.
    [67] ALMUAILI F A, MCDONALD S A, WITHERS P J, et al. Strain-induced reactivation of corrosion pits in austenitic stainless steel[J]. Corrosion Science, 2017, 125:12-19.
    [68] 尹奇, 王振尧, 潘晨. 纯锌在模拟热带海洋大气环境下的初期腐蚀行为[J]. Transactions of Nonferrous Metals Society of China, 2018, 28(12):2582-2591.
    [69] 刘蔚, 刘斌, 徐大伟, 等. 荧光探针技术在金属初期腐蚀检测中的研究进展[J]. 腐蚀与防护, 2021, 42(5):47-53.
    [70] 鞠鹏飞, 赵祥妮, 熊亮亮, 等. 荧光剂对铝合金防护涂层腐蚀监测敏感性的影响[J]. 中国表面工程, 2018, 31(3):116-125.
    [71] WU Z Y, XU Z Y, TAN H Y, et al. Two novel rhodamine-based fluorescent probes for the rapid and sensitive detection of Fe3+:Experimental and DFT calculations[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2019, 213:167-175.
    [72] 刘岩. 基于数值仿真技术金属海洋腐蚀行为研究[D]. 北京:北京化工大学, 2021.
    [73] 梁婉怡, 胡丽娟, 董海英, 等. 夹杂物对316L不锈钢初期点蚀影响的数值模拟[J]. 上海金属, 2019, 41(2):35-42.
    [74] 唐晓乐. 铁素体不锈钢再结晶织构演变的元胞自动机模拟[D]. 大连:大连理工大学, 2020.
    [75] 李磊, 李晓刚, 肖葵, 等. 金属在湿大气环境下初期腐蚀行为的元胞自动机模拟[J]. 中国腐蚀与防护学报, 2010, 30(2):114-118.
    [76] 辜小花, 李景哲, 李太福, 等. 基于动态核独立元统计量的石油管道泄漏检测[J]. 仪器仪表学报, 2017, 38(1):166-173.
    [77] 韦文追. 海洋工程用低合金钢中夹杂物诱发局部腐蚀行为的机理研究[D]. 武汉:武汉科技大学, 2020.
    [78] 邓志安, 李姝仪, 李晓坤, 等. 基于模糊神经网络的海洋管线腐蚀速率预测新方法[J]. 中国腐蚀与防护学报, 2015, 35(6):571-576.
    [79] WANG H L, LAI D, XU J P, et al. Nano-precipitation leading to linear zero thermal expansion over a wide temperature range in Ti22Nb[J]. Scripta Materialia, 2021, 205:114222.
    [80] NAGHDY S, PERCQ L L, SERRET R, et al. Microstructural evolution study of severely deformed commercial aluminium by transmission Kikuchi diffraction[J]. Materials Science and Technology, 2017, 33(6):678-687.
    [81] BRODU E, BOUZY E, FUNDENBERGER J J, et al. On-axis TKD for orientation mapping of nanocrystall-ine materials in SEM[J]. Materials Characterization, 2017, 130:92-96.
    [82] WOLLSCHLÄGER N, PALASSEB L, HÄUSLERA I, et al. Characterization of the inner structure of porous TiO2 nanoparticle films in dye sensitive solar cells (DSSC) by focused ion beam (FIB) tomography and transmission Kikuchi diffraction (TKD) in the scanning electron microscope (SEM)[J]. Materials Characterization, 2017, 131:39-48.
    [83] MORTAZAVI N, ESMAILY M, HALVARSSON M. The capability of Transmission Kikuchi Diffraction technique for characterizing nano-grained oxide scales formed on a FeCrAl stainless steel[J]. Materials Letters, 2015, 147:42-45.
    [84] 覃丽禄. 透射式电子背散射衍射技术(t-EBSD)在材料学中的应用研究进展[J]. 世界科技研究与发展, 2017, 39(2):134-138.
    [85] ABBASI M, DEHGHANI M, GUIM H U, et al. Investigation of Fe-rich fragments in aluminum-steel friction stir welds via simultaneous Transmission Kikuchi Diffraction and EDS[J]. Acta Materialia, 2016, 117:262-269.
    [86] OUDRISS A, GUERNIC S L, WANG Z. Meso-scale anisotropic hydrogen segregation near grain boundaries in polycrystalline nickel characterized by EBSD/SIMS[J]. Materials Letters, 2016, 165:217-222.
    [87] SOBOL O, NOLZE G, NEUMANN R S, et al. Novel approach to image hydrogen distribution and related phase transformation in duplex stainless steels at the submicron scale[J]. International Journal of Hydrog-en Energy, 2017, 42(39):25114-25120.
    [88] TARZIMOGHADAM Z, ROHWERDER M, MERZLIKIN S V, et al. Multi-scale and spatially resolved hydrogen mapping in a Ni-Nb model alloy reveals the role of the δ phase in hydrogen embrittlement of alloy 718[J]. Acta Materialia, 2016, 109:69-81.
    [89] YAMABE J, AWANE T, MURAKAMI Y. Hydrogen trapped at intermetallic particles in aluminum alloy 6061-T6 exposed to high-pressure hydrogen gas and the reason for high resistance against hydrogen embrittlement[J]. International Journal of Hydrogen Energy, 2017, 42(38):24560-24568.
    [90] NAN P, LI A, CHENG L, et al. Visualizing the Mg atoms in Mg3Sb2 thermoelectrics using advanced iDP-CSTEM technique[J]. Materials Today Physics, 2021, 21:100524.
    [91] JIANG Z, XU X H, MA Y H, et al. Filling metal-organic framework mesopores with TiO2 for CO2 photoreduction[J]. Nature, 2020, 586(7830):549-554.
    [92] KIMOTO K, ASAKA T, NAGAI T, et al. Element-selective imaging of atomic columns in a crystal using STEM and EELS[J]. Nature, 2007, 450(7170):702-704.
    [93] MEISNAR M, VILALTA-CLEMENTE A, MOODY M, et al. A mechanistic study of the temperature dependence of the stress corrosion crack growth rate in SUS316 stainless steels exposed to PWR primary water[J]. Acta Materialia, 2016, 114:15-24.
    [94] VARSHNEY D, VENKATESWARA R C, GUINEL M J F, et al. Free standing graphene-diamond hybrid films and their electron emission properties[J]. Journal of Applied Physics, 2011, 110(4):044324.
    [95] 周邦新, 刘文庆. 三维原子探针及其在材料科学研究中的应用[J]. 材料科学与工艺, 2007, 15(3):405-408.
    [96] MARQUIS E A, BACHHAV M, CHEN Y, et al. On the current role of atom probe tomography in materials characterization and materials science[J]. Current Opinion in Solid State and Materials Science, 2013, 17(5):217-223.
    [97] 余锦涛, 郭占成, 冯婷, 等. X射线光电子能谱在材料表面研究中的应用[J]. 表面技术, 2014, 43(1):119-124.
    [98] HU S B, LIU L, CUI Y, et al. Influence of hydros-tatic pressure on the corrosion behavior of 90/10 copper-nickel alloy tube under alternating dry and wet condition[J]. Corrosion Science, 2019, 146:202-212.
    [99] 沈学静, 郭飞飞, 徐鹏, 等. LIBS对钛合金焊缝中成分的原位统计分布分析表征[J]. 光谱学与光谱分析, 2021, 41(12):3869-3875.
    [100] 赵雷, 贾云海, 袁良经, 等. 材料非平面部位组成与状态的原位统计分布分析表征技术[J]. 冶金分析, 2013, 33(4):1-12.
    [101] 韩冰, 孙丹丹, 万卫浩, 等. 基于微束X射线荧光的铸轧7B05铝合金元素偏析研究[J]. 光谱学与光谱分析, 2022, 42(5):1413-1419.
    [102] 盛亮, 袁良经, 李冬玲, 等. 高铁车轮中复合夹杂物的火花光谱原位分析[J]. 光谱学与光谱分析, 2022, 42(4):1122-1128.
    [103] 万楚豪. U71Mn钢焊接接头疲劳损伤的非线性超声检测[D]. 哈尔滨:哈尔滨工业大学, 2016.
    [104] PATEL S R. Durability of hygrothermally aged graphite/epoxy woven composite under combined hygrothermal conditions[J]. International Journal of Fatigue, 2002, 24(12):1295-1301.
  • 加载中
计量
  • 文章访问数:  235
  • HTML全文浏览量:  50
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-10
  • 网络出版日期:  2023-01-12

目录

    /

    返回文章
    返回