留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光粉末床融合含铒铝合金研究进展

毕舰镭 魏午 翟玉妍 裴瑜 文胜平 荣莉 黄晖 聂祚仁

毕舰镭, 魏午, 翟玉妍, 裴瑜, 文胜平, 荣莉, 黄晖, 聂祚仁. 激光粉末床融合含铒铝合金研究进展[J]. 材料开发与应用, 2024, 39(1): 94-104.
引用本文: 毕舰镭, 魏午, 翟玉妍, 裴瑜, 文胜平, 荣莉, 黄晖, 聂祚仁. 激光粉末床融合含铒铝合金研究进展[J]. 材料开发与应用, 2024, 39(1): 94-104.
BI Jianlei, WEI Wu, ZHAI Yuyan, PEI Yu, WEN Shengping, RONG Li, HUANG Hui, NIE Zuoren. Research and Progress of Aluminum Alloys Containing Erbium by Laser Powder Bed Fusion[J]. Development and Application of Materials, 2024, 39(1): 94-104.
Citation: BI Jianlei, WEI Wu, ZHAI Yuyan, PEI Yu, WEN Shengping, RONG Li, HUANG Hui, NIE Zuoren. Research and Progress of Aluminum Alloys Containing Erbium by Laser Powder Bed Fusion[J]. Development and Application of Materials, 2024, 39(1): 94-104.

激光粉末床融合含铒铝合金研究进展

基金项目: 

国家自然科学基金(51621003),国家重点研发计划(2021YFB3704202,2021YFB3704203,2021YFB3704205),北京市自然科学基金(2202009)

详细信息
    作者简介:

    毕舰镭,男,1998年生,硕士研究生,主要从事铒微合金化铝合金及增材制造研究。E-mail:bijianlei@emails.bjut.edu.cn

    通讯作者:

    魏午,男,1990年生,博士,副教授,主要从事增材制造及先进铝合金研究。E-mail:weiwu@bjut.edu.cn

  • 中图分类号: TG146.21

Research and Progress of Aluminum Alloys Containing Erbium by Laser Powder Bed Fusion

  • 摘要: 近年来增材制造铝合金技术得到迅速发展,尤其是激光粉末床融合技术(LPBF)在部分构件上实现了应用验证。在LPBF技术中,常通过添加微量元素,如稀土铒(Er)元素等,来改善合金的成形性和力学性能。本研究从Er在铝合金中的作用机理出发,系统性概述Er元素在LPBF特殊热环境中的演变机制以及时效响应。总结在LPBF工艺下,Er元素在Al-Si、Al-Mg和Al-Zn-Mg-Cu合金中的存在形式和应用,对比不同含铒铝合金的力学性能,并对LPBF含铒铝合金的发展进行了展望。

     

  • [1] ABOULKHAIR N T, SIMONELLI M, PARRY L, et al. 3D printing of Aluminium alloys: Additive Manufacturing of Aluminium alloys using selective laser melting[J]. Progress in Materials Science, 2019, 106: 100578.
    [2] MICHI R A, PLOTKOWSKI A, SHYAM A, et al. To-wards high-temperature applications of aluminium alloys enabled by additive manufacturing[J]. International Materials Reviews, 2022, 67(3): 298-345.
    [3] DEBROY T, WEI H L, ZUBACK J S, et al. Additive manufacturing of metallic components - Process, structure and properties[J]. Progress in Materials Science, 2018, 92: 112-224.
    [4] LIU Q, WU H K, PAUL M J, et al. Machinelear-ning assisted laser powder bed fusion process optimization for AlSi10Mg: new microstructure description indices and fracture mechanisms[J]. Acta Materialia, 2020, 201: 316-328.
    [5] KEMPF A, HILGENBERG K. Influence of sub-cell structure on the mechanical properties of AlSi10Mg manufactured by laser powder bed fusion[J]. Materials Science and Engineering: A, 2020, 776: 138976.
    [6] WANG R, WANG J, LEI L M, et al. Laser additive manufacturing of strong and ductile Al-12Si alloy under static magnetic field[J]. Journal of Materials Science & Technology, 2023, 163: 101-112.
    [7] RAO H, GIET S, YANG K, et al. The influence of processing parameters on aluminium alloy A357 manufactured by Selective Laser Melting[J]. Materials & Design, 2016, 109: 334-346.
    [8] TANG H P, GAO C F, ZHANG Y, et al. Effects of direct aging treatment on microstructure, mechanical properties and residual stress of selective laser melted AlSi10Mg alloy[J]. Journal of Materials Science & Technology, 2023, 139: 198-209.
    [9] PELLIZZARI M, MALFATTI M, LORA C, et al. Pro-perties of laser metal fused AlSi10Mg alloy processed using different heat treatments[J]. BHM Berg-Und Hüttenmännische Monatshefte, 2020, 165(3): 164-168.
    [10] WANG M, SONG B, WEI Q S, et al. Effects of annealing on the microstructure and mechanical properties of selective laser melted AlSi7Mg alloy[J]. Materials Science and Engineering: A, 2019, 739: 463-472.
    [11] YANG K, ROMETSCH P, DAVIES C H J, et al. Ef-fect of heat treatment on the microstructure and anisotropy in mechanical properties of A357 alloy produced by selective laser melting[J]. Materials & Design, 2018, 154: 275-290.
    [12] PADOVANO E, BADINI C, PANTARELLI A, et al. A comparative study of the effects of thermal treatments on AlSi10Mg produced by laser powder bed fusion[J]. Journal of Alloys and Compounds, 2020, 831: 154822.
    [13] 魏午, 毕舰镭, 郭彦梧, 等. 激光粉末床融合铝合金微合金化研究进展[J]. 海军航空大学学报, 2023, 38(4): 338-346.
    [14] SPIERINGS A B, DAWSON K, DUMITRASCHKEWITZ P, et al. Microstructure characterization of SLM-processed Al-Mg-Sc-Zr alloy in the heat treated and HIPed condition[J]. Additive Manufacturing, 2018, 20: 173-181.
    [15] SPIERINGS A B, DAWSON K, KERN K, et al. SLM-processed Sc- and Zr- modified Al-Mg alloy: mechanical properties and microstructural effects of heat treatment[J]. Materials Science and Engineering: A, 2017, 701: 264-273.
    [16] CABRERA-CORREA L, GONZÁLEZ-ROVIRA L, DE DIOS LÓPEZ-CASTRO J, et al. Effect of the heat treatment on the mechanical properties and microstructure of Scalmalloy© manufactured by Selective Laser Melting (SLM) under certified conditions[J]. Materials Characterization, 2023, 196: 112549.
    [17] AWD M, TENKAMP J, HIRTLER M, et al. Compa-rison of microstructure and mechanical properties of scalmalloy© produced by selective laser melting and laser metal deposition[J]. Materials, 2017, 11(1): 17.
    [18] SPIERINGS A B, DAWSON K, UGGOWITZER P J, et al. Influence of SLM scan-speed on microstructure, precipitation of Al3Sc particles and mechanical properties in Sc- and Zr-modified Al-Mg alloys[J]. Materials & Design, 2018, 140: 134-143.
    [19] LI R D, WANG M B, LI Z M, et al. Developing a high-strength Al-Mg-Si-Sc-Zr alloy for selective laser melting: crack-inhibiting and multiple strengthening mechanisms[J]. Acta Materialia, 2020, 193: 83-98.
    [20] CROTEAU J R, GRIFFITHS S, ROSSELL M D, et al. Microstructure and mechanical properties of Al-Mg-Zr alloys processed by selective laser melting[J]. Acta Materialia, 2018, 153: 35-44.
    [21] GUO Y W, WEI W, SHI W, et al. Effect of Er and Zr additions and aging treatment on grain refinement of aluminum alloy fabricated by laser powder bed fusion[J]. Journal of Alloys and Compounds, 2022, 912: 165237.
    [22] GUO Y W, WEI W, SHI W, et al. Microstructure and mechanical properties of Al-Mg-Mn-Er-Zr alloys fabricated by laser powder bed fusion[J]. Materials & Design, 2022, 222: 111064.
    [23] ZHANG B, WEI W, SHI W, et al. Effect of heat treatment on the microstructure and mechanical properties of Er-containing Al-7Si-0.6 Mg alloy by laser powder bed fusion[J]. Journal of Materials Research and Technology, 2022, 18: 3073-3084.
    [24] LI M, YAO S, WANG J J, et al. Role of Er on the densification, microstructure and mechanical properties of 7075 aluminium alloys manufactured by laser powder bed fusion[J]. Journal of Materials Research and Technology, 2022, 20: 2021-2033.
    [25] GUO Y W, WEI W, SHI W, et al. Effect of aging treatment on phase evolution and mechanical properties of selective laser melted Al-Mg-Er-Zr alloy[J]. Materials Letters, 2022, 327: 133001.
    [26] WEN S P, GAO K Y, LI Y, et al. Synergetic effect of Er and Zr on the precipitation hardening of Al-Er-Zr alloy[J]. Scripta Materialia, 2011, 65(7): 592-595.
    [27] WEN S P, GAO K Y, HUANG H, et al. Precipita-tion evolution in Al-Er-Zr alloys during aging at elevated temperature[J]. Journal of Alloys and Compounds, 2013, 574: 92-97.
    [28] WEN S P, XING Z B, HUANG H, et al. The effect of erbium on the microstructure and mechanical properties of Al-Mg-Mn-Zr alloy[J]. Materials Science and Engineering: A, 2009, 516(1-2): 42-49.
    [29] PRASHANTH K G, ECKERT J. Formation of metastable cellular microstructures in selective laser melted alloys[J]. Journal of Alloys and Compounds, 2017, 707: 27-34.
    [30] MARQUIS E A, SEIDMAN D N. Nanoscale structural evolution of Al3Sc precipitates in Al(Sc) alloys[J]. Acta Materialia, 2001, 49(11): 1909-1919.
    [31] HYER H, ZHOU L, MEHTA A, et al. Composition-dependent solidification cracking of aluminum-silicon alloys during laser powder bed fusion[J]. Acta Materialia, 2021, 208: 116698.
    [32] HYER H, ZHOU L, MEHTA A, et al. Effects of al-loy composition and solid-state diffusion kinetics on powder bed fusion cracking susceptibility[J]. Journal of Phase Equilibria and Diffusion, 2021, 42(1): 5-13.
    [33] 张冬云. 采用区域选择激光熔化法制造铝合金模型[J]. 中国激光, 2007, 34(12): 1700-1704.
    [34] PAUL M J, LIU Q, BEST J P, et al. Fracture resis-tance of AlSi10Mg fabricated by laser powder bed fusion[J]. Acta Materialia, 2021, 211: 116869.
    [35] CHEN B, MOON S K, YAO X, et al. Strength and strain hardening of a selective laser melted AlSi10Mg alloy[J]. Scripta Materialia, 2017, 141: 45-49.
    [36] COLOMBO M, GARIBOLDI E, MORRI A. Er addi-tion to Al-Si-Mg-based casting alloy: effects on microstructure, room and high temperature mechanical properties[J]. Journal of Alloys and Compounds, 2017, 708: 1234-1244.
    [37] QI P, LI B L, WANG T B, et al. Effect of erbium on the microstructure and mechanical properties of semi-solid Al–7Si–0.4Mg alloy[J]. Advanced Engineering Materials, 2019, 21(3): 1801037.
    [38] RUTTER J W, CHALMERS B. A prismatic substructure formed during solidification of metals[J]. Canadian Journal of Physics, 1953, 31(1): 15-39.
    [39] GUO Y W, WEI W, SHI W, et al. Selective laser melting of Er modified AlSi7Mg alloy: effect of processing parameters on forming quality, microstructure and mechanical properties[J]. Materials Science and Engineering: A, 2022, 842: 143085.
    [40] BI J L, WEI W, GUO Y W, et al. Evolution of multi-cellular structure on Zr and Er modified Al6Si1Mg alloy fabricated by laser powder bed fusion[J]. Journal of Materials Research and Technology, 2023, 25: 398-410.
    [41] OKAMOTO H. Al-Er (aluminum-erbium)[J]. Jo-urnal of Phase Equilibria and Diffusion, 2011, 32(3): 261-262.
    [42] GUO Y W, WEI W, HUANG H, et al. Approaching an ultrafine microstructure and excellent tensile pro-perties of a novel Er/Zr modified Al-7Si-0.6 Mg alloy fabricated by selective laser melting[J]. Journal of Materials Research and Technology, 2023, 22: 1625-1637.
    [43] FIOCCHI J, TUISSI A, BIFFI C A. Heat treatment of aluminium alloys produced by laser powder bed fusion: a review[J]. Materials & Design, 2021, 204: 109651.
    [44] ZOU T C, CHEN M Y, ZHU H, et al. Effect of heat treatments on microstructure and mechanical properties of AlSi7Mg fabricated by selective laser melting[J]. Journal of Materials Engineering and Performance, 2022, 31(3): 1791-1802.
    [45] FIOCCHI J, BIFFI C A, COLOMBO C, et al. Ad hoc heat treatments for selective laser melted Alsi10mg alloy aimed at stress-relieving and enhancing mechanical performances[J]. JOM, 2020, 72(3): 1118-1127.
    [46] 郭泽亮, 樊笑婕. 美国濒海战斗舰用铝合金材料评述[J]. 材料开发与应用, 2021, 36(6): 77-82.
    [47] STARINK M J, ZAHRA A M. β’ and β precipitation in an Al-Mg alloy studied by DSC and TEM[J]. Acta Materialia, 1998, 46(10): 3381-3397.
    [48] KOTOV A D, MOCHUGOVSKIY A G, MOSLEH A O, et al. Microstructure, superplasticity, and mechanical properties of Al-Mg-Er-Zr alloys[J]. Materials Characterization, 2022, 186: 111825.
    [49] SUN Y W, WANG J L, SHI Y, et al. An SLM-processed Er- and Zr- modified Al-Mg alloy: Microstructure and mechanical properties at room and elevated temperatures[J]. Materials Science and Engineering: A, 2023, 883: 145485.
    [50] 吴颖, 温彤, 朱曾涛. 7xxx系铝合金时效处理的研究现状及应用进展[J]. 材料导报, 2012, 26(15): 114-118.
    [51] 李敬勇, 王虎, 刘志鹏, 等. 预拉伸条件下铝合金筒体焊接残余应力和变形的数值模拟[J]. 材料开发与应用, 2008, 23(5): 52-55.
    [52] MONTERO-SISTIAGA M L, MERTENS R, VRA-NCKEN B, et al. Changing the alloy composition of Al7075 for better processability by selective laser melting[J]. Journal of Materials Processing Technology, 2016, 238: 437-445.
    [53] OTANI Y, SASAKI S. Effects of the addition of silic-on to 7075 aluminum alloy on microstructure, mechanical properties, and selective laser melting processability[J]. Materials Science and Engineering: A, 2020, 777: 139079.
    [54] SUN S Y, LIU P, HU J Y, et al. Effect of solid solution plus double aging on microstructural characterization of 7075 Al alloys fabricated by selective laser melting (SLM)[J]. Optics & Laser Technology, 2019, 114: 158-163.
    [55] ZHOU L, PAN H, HYER H, et al. Microstructure and tensile property of a novel AlZnMgScZr alloy additively manufactured by gas atomization and laser powder bed fusion[J]. Scripta Materialia, 2019, 158: 24-28.
    [56] ZHU Z G, NG F L, SEET H L, et al. Superior mechanical properties of a selective-laser-melted AlZnMgCuScZr alloy enabled by a tunable hierarchical microstructure and dual-nanoprecipitation[J]. Materials Today, 2022, 52: 90-101.
    [57] ZHANG Z Q, LI D H, LI S C, et al. Effect of direct aging treatment on microstructure, mechanical and corrosion properties of a Si-Zr-Er modified Al-Zn-Mg-Cu alloy prepared by selective laser melting technology[J]. Materials Characterization, 2022, 194: 112459.
    [58] LI D H, ZHANG Z Q, LI S C, et al. Microstructure, mechanical properties and fatigue crack growth behavior of an Al-Zn-Mg-Cu-Si-Zr-Er alloy fabricated by laser powder bed fusion[J]. International Journal of Fatigue, 2023, 172: 107636.
    [59] LIU S W, ZHU H H, PENG G Y, et al. Microstructure prediction of selective laser melting AlSi10Mg using finite element analysis[J]. Materials & Design, 2018, 142: 319-328.
    [60] HU Z H, NIE X J, QI Y, et al. Cracking criterion for high strength Al-Cu alloys fabricated by selective laser melting[J]. Additive Manufacturing, 2021, 37: 101709.
    [61] TANG Y T, PANWISAWAS C, GHOUSSOUB J N, et al. Alloys-by-design: application to new superalloys for additive manufacturing[J]. Acta Materialia, 2021, 202: 417-436.
    [62] ZHAO Z Y, WANG J B, DU W B, et al. Numerical simulation and experimental study of the 7075 aluminum alloy during selective laser melting[J]. Optics & Laser Technology, 2023, 167: 109814.
    [63] KANNO M, ARAKI I, CUI Q. Precipitation beha-viour of 7000 alloys during retrogression and reaging treatment[J]. Materials Science and Technology, 1994, 10(7): 599-603.
    [64] 朱溪, 袁铁锤, 王敏卜, 等. 选区激光熔化增材制造高强度Al-Mg-Sc-Zr合金的微观组织与力学性能[J]. 粉末冶金材料科学与工程, 2022, 27(2): 205-214.
  • 加载中
计量
  • 文章访问数:  56
  • HTML全文浏览量:  7
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-27

目录

    /

    返回文章
    返回