ZHANG Yun-qian, WANG Hong-ren. Iron Anode Falling off Analysis and Countermeasures of Tianwan NPP Condenser Water Chambers[J]. Development and Application of Materials, 2014, 29(5): 46-51. DOI: 10.19515/j.cnki.1003-1545.2014.05.009
Citation: ZHANG Yun-qian, WANG Hong-ren. Iron Anode Falling off Analysis and Countermeasures of Tianwan NPP Condenser Water Chambers[J]. Development and Application of Materials, 2014, 29(5): 46-51. DOI: 10.19515/j.cnki.1003-1545.2014.05.009

Iron Anode Falling off Analysis and Countermeasures of Tianwan NPP Condenser Water Chambers

More Information
  • Received Date: June 12, 2014
  • Available Online: March 20, 2024
  • Tianwan NPP condenser water chambers made of authentic stainless steel and titanium, some iron anodes which used to protect condenser falling off. Metallography, electron microscopy and X-ray diffraction were used to analyze the reasons of individual anode falling off failure. The results indicated that the sensitization of the SS304 core is the main reason, which lead to serious stress corrosion. Some improvement means are made.
  • Related Articles

    [1]GAO Yuhao, WANG Jia, WU Zepeng, CHEN Pei, ZHAI Jianfei. Study on Crack Curvature Correction Method in Fatigue Crack Growth Rate Test[J]. Development and Application of Materials, 2023, 38(2): 10-15.
    [2]LI Chong, GONG Xuhui, WANG Renfu. Study on Fatigue Surface Crack Propagation of 10Ni5CrMoV Steel under Biaxial Bending Stress[J]. Development and Application of Materials, 2017, 32(3): 5-10. DOI: 10.19515/j.cnki.1003-1545.2017.03.002
    [3]ZHANG Yajun, DANG Hengyao. Some Problems Appeared in Fatigue and Fracture Test of Materials(2)[J]. Development and Application of Materials, 2017, 32(2): 1-6. DOI: 10.19515/j.cnki.1003-1545.2017.02.001
    [4]ZHANG Yajun. Some Problems Appeared in Fatigue and Fracture Test of Materials( 1)[J]. Development and Application of Materials, 2017, 32(1): 1-5. DOI: 10.19515/j.cnki.1003-1545.2017.01.001
    [5]WU Chunxue, ZHANG Yongfeng, REN Fangjie. Study on Fatigue Crack Growth Rate of High Pressure Vessel Steel[J]. Development and Application of Materials, 2016, 31(1): 27-29. DOI: 10.19515/j.cnki.1003-1545.2016.01.006
    [6]CONG Jian-chen, SUN Jun, NI Pei-xiang, WANG Lei, CI Wei-hong. Crack Study and Failure Criterion in Bending Fatigue Test of Crankshaft[J]. Development and Application of Materials, 2014, 29(6): 104-109. DOI: 10.19515/j.cnki.1003-1545.2014.06.021
    [7]ZHANG Ya-jun, ZHANG Li-juan. Study on Zigzag Path of Low Cycle Fatigue Surface Crack Propagation under Cantilever Bend Loading[J]. Development and Application of Materials, 2013, 28(3): 94-97. DOI: 10.19515/j.cnki.1003-1545.2013.03.021
    [8]ZHANG Ya-jun, WEI Ping-an, ZHANG Li-juan. Evolution Law of Parameters in Surface Crack Propagation Rate Test under Cantilever Bend Loading[J]. Development and Application of Materials, 2013, 28(2): 74-78. DOI: 10.19515/j.cnki.1003-1545.2013.02.017
    [9]ZHANG Ya-jun, ZHANG Li-juan. Influence of Residual Strain to Surface Crack Propagation Rate[J]. Development and Application of Materials, 2012, 27(5): 63-66. DOI: 10.19515/j.cnki.1003-1545.2012.05.017
    [10]ZHANG Ya-jun, ZHANG Li-juan, GAO Ling-qing. Study on Surface Crack Propagation Characteristics of 800MPa Steel in Corrosion Circumstance under Cantilever Bend Loading[J]. Development and Application of Materials, 2012, 27(4): 4-6,12. DOI: 10.19515/j.cnki.1003-1545.2012.04.002

Catalog

    Article Metrics

    Article views (30) PDF downloads (2) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return