ZHOU Hongbing, WANG Bing, ZHAO Shulei, GUO Wantao. Numerical Simulation Analysis for the Influence of Ageing on the Viscoelastic Damping Materials[J]. Development and Application of Materials, 2016, 31(5): 76-80. DOI: 10.19515/j.cnki.1003-1545.2016.05.017
Citation: ZHOU Hongbing, WANG Bing, ZHAO Shulei, GUO Wantao. Numerical Simulation Analysis for the Influence of Ageing on the Viscoelastic Damping Materials[J]. Development and Application of Materials, 2016, 31(5): 76-80. DOI: 10.19515/j.cnki.1003-1545.2016.05.017

Numerical Simulation Analysis for the Influence of Ageing on the Viscoelastic Damping Materials

More Information
  • Received Date: April 06, 2016
  • Available Online: March 29, 2024
  • Using the finite element analysis( FEM) numerical simulation software of PANTRAN/NASTRAN,the vibration levels of the stand treated with certain type of viscoelastic damping materials of unaged and used for 10 years were analysed.According to the results,the vibration acceleration levels of the materials of unaged and used for 10 years changed for about 5d B in the frequency range of 0—500 Hz and the vibration levels change for about 10 d B when the frequency was lower than 300 Hz.
  • Related Articles

    [1]DING Penglong, CHEN Lei, HE Liang, YU Jun. Experimental Measurement and Numerical Simulation of Residual Stress on Butt Welding Steel Plates[J]. Development and Application of Materials, 2023, 38(2): 16-22.
    [2]ZHOU Tiezhu, YU Yan, ZHENG Congfang, YUAN Wei, FU Liguo, ZHAO Guochao. Numerical Simulation of Inner Flow of B10 Copper Alloy Elbow Based on FLUENT[J]. Development and Application of Materials, 2022, 37(3): 61-68.
    [3]WANG Donghui, CHEN Zhenhua, WANG Shaogang. Numerical Simulation and Process Optimization on Electron Beam Welding of Al-Li Alloy[J]. Development and Application of Materials, 2020, 35(1): 58-67.
    [4]SHAO Fei, WU Chunxue, ZHANG Yongfeng, DENG Chunfeng. Numerical Simulation Research on the Spining Force of Neck-spining Formation of the Bottle Pressure Vessel[J]. Development and Application of Materials, 2019, 34(5): 35-39. DOI: 10.19515/j.cnki.1003-1545.2019.05.008
    [5]ZONG Feng, HUO Guangrui, WU Songlin. Analysis on Numerical Simulation for the Twin-Wire SAW Welding Temperature Field[J]. Development and Application of Materials, 2016, 31(4): 51-56. DOI: 10.19515/j.cnki.1003-1545.2016.04.010
    [6]YANG Shu. Research on Heat Source Model and Numerical Simulation of High Frequency Induction Heating Forming[J]. Development and Application of Materials, 2015, 30(4): 20-23. DOI: 10.19515/j.cnki.1003-1545.2015.04.005
    [7]WAN Songlin, WU Songlin. Numerical Simulation Analysis for the Welding Residual Stress of Low Strength Match Butt Joints[J]. Development and Application of Materials, 2015, 30(1): 33-37. DOI: 10.19515/j.cnki.1003-1545.2015.01.007
    [8]SHAO Fei, REN Fang-jie, CHANG Lei, ZHANG Yong-feng. Numerical Simulation Research on the Process of Hot Neck-spining Formation for the Seamless Cylinder[J]. Development and Application of Materials, 2013, 28(3): 102-106. DOI: 10.19515/j.cnki.1003-1545.2013.03.023
    [9]WU Song-lin, LI De-qiang, SHAO Fei, DENG Chun-feng. Numerical Simulation Research on the Process of Multi-path Hot Neck-spinning Formation for the Cylinder[J]. Development and Application of Materials, 2012, 27(4): 7-12. DOI: 10.19515/j.cnki.1003-1545.2012.04.003
    [10]XI Yu-lin, WU Chuang, LIU Guo-yuan, ZHANG Xin-jie. Numerical Simulation Analysis on Micro-mechanical Characteristics of Titanium Particle Reinfored Magnesium Matrix Composites[J]. Development and Application of Materials, 2012, 27(2): 28-31. DOI: 10.19515/j.cnki.1003-1545.2012.02.007

Catalog

    Article Metrics

    Article views (43) PDF downloads (1) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return