Citation: | SUN Guangda, LI Yuxuan, ZHANG Tianhao, ZHOU Li, YANG Shengli, GAO Fuyang, LÜ Yifan, QIAO Sheng, ZHU Tiecheng. Research Progress of Friction Stir Welding Technology in Marine Titanium Alloy[J]. Development and Application of Materials, 2024, 39(5): 17-30. |
[1] |
MIRONOV S, SATO Y S, KOKAWA H. Friction-stir welding and processing of Ti-6Al-4V titanium alloy: a review[J]. Journal of Materials Science & Techno-logy, 2018, 34(1): 58-72.
|
[2] |
陈军, 王廷询, 周伟, 等. 国内外船用钛合金及其应用[J]. 钛工业进展, 2015, 32(6): 8-12.
|
[3] |
DING L F, QIN B H, GE K K, et al. Microstructures and mechanical properties of thick Ti-6Al-3Nb-2Zr-1Mo joint by magnetron-controlled narrow gap TIG welding [J]. Metals and materlils international, 2023, 29(8): 2304-2315.
|
[4] |
GAO F Y, SUN Z J, YANG S L, et al. Stress corrosion characteristics of electron beam welded titanium alloys joints in NaCl solution[J]. Materials Characterization, 2022, 192: 112126.
|
[5] |
HEIDARZADEH A, MIRONOV S, KAIBYSHEV R, et al. Friction stir welding/processing of metals and alloys: a comprehensive review on microstructural evolution[J]. Progress in Materials Science, 2021, 117: 100752.
|
[6] |
DING Z H, FAN Q, WANG L Q. A review on friction stir processing of titanium alloy: characterization, method, microstructure, properties[J]. Metallurgical and Materials Transactions B, 2019, 50(5): 2134-2162.
|
[7] |
LI H, PENG L F, MENG B, et al. Energy field assisted metal forming: current status, challenges and prospects[J]. International Journal of Machine Tools and Manufacture, 2023, 192: 104075.
|
[8] |
WANG J Y, SU J Q, MISHRA R S, et al. Tool wear mechanisms in friction stir welding of Ti-6Al-4V alloy[J]. Wear, 2014, 321: 25-32.
|
[9] |
ZHANG Y N, CAO X, LAROSE S, et al. Review of tools for friction stir welding and processing[J]. Canadian Metallurgical Quarterly, 2012, 51(3): 250-261.
|
[10] |
RAI R, DE A, BHADESHIA H H, et al. Review: friction stir welding tools[J]. Science and Technology of Welding and Joining, 2011, 16(4): 325-342.
|
[11] |
BUFFA G, FRATINI L, MICARI F, et al. Proceedings of the 40th Annual North American Manufacturing Research Conference, June 4-8, 2012 [C]. Michigan: Society of Manufacturing Engineers, 2012.
|
[12] |
FALL A, FESHARAKI M, KHODABANDEH A, et al. Tool wear characteristics and effect on microstructure in Ti-6Al-4V friction stir welded joints[J]. Metals, 2016, 6(11): 275.
|
[13] |
NASRESFAHANI A R, SOLTANIPUR A R, FARMANESH K, et al. Effects of tool wear on friction stir welded joints of Ti-6Al-4V alloy[J]. Materials Science and Technology, 2017, 33(5): 583-591.
|
[14] |
MASHININI P M, DINAHARAN I, DAVID RAJA SELVAM J, et al. Microstructure evolution and mechanical characterization of friction stir welded titanium alloy Ti–6Al–4V using lanthanated tungsten tool[J]. Materials Characterization, 2018, 139: 328-336.
|
[15] |
MOHANTY P P. Wear of friction stir tools considering qualitative and quantitative aspects: a review[J]. International Journal of Ambient Energy, 2022, 43(1): 5535-5553.
|
[16] |
AMIROV A, ELISEEV A, KOLUBAEV E, et al. Wear of ZhS6U nickel superalloy tool in friction stir processing on commercially pure titanium[J]. Metals, 2020, 10(6): 799.
|
[17] |
AMIROV A I, ELISEEV A A, RUBTSOV V E, et al. Butt friction stir welding of commercially pure titanium by the tool from a heat-resistant nickel alloy[C]//AIP. Proceedings of the international conference on advanced materials with hierarchical structure for new technologies and reliable structures 2019. Tomsk: AIP Publishing, 2019.
|
[18] |
AMIROV A, UTYAGANOVA V, BELOBORODOV V, et al. Formation features of a welding joint of alloy grade2 by the friction stir welding using temperature resistant tools[J]. Metal Working and Material Science, 2019, 21(3): 72-82.
|
[19] |
ZHANG Y, SATO Y S, KOKAWA H, et al. Stir zone microstructure of commercial purity titanium friction stir welded using pcBN tool[J]. Materials Science and Engineering: A, 2008, 488(1-2): 25-30.
|
[20] |
BAO J W, YANG S Y, YANG T. Microstructural evolution, tensile property and dynamic compressive property of FSWed Ti-6Al-4V alloy[J]. Rare Metals, 2020, 39(2): 169-175.
|
[21] |
LIU Z L, YANG K, YUE Y M, et al. Friction stir lap welding Ti-6Al-4V alloy using a threaded pin by simulation and experimental investigation[J]. Transactions of the Indian Institute of Metals, 2018, 71(5): 1279-1286.
|
[22] |
DU S S, LIU H J, JIANG M H, et al. The performance of a Co-based alloy tool in the friction stir welding of TA5 alloy[J]. Wear, 2022, 488-489: 204180.
|
[23] |
ZHOU L, LIU H J, LIU Q W. Effect of rotation speed on microstructure and mechanical properties of Ti-6Al-4V friction stir welded joints[J]. Materials & Design (1980-2015), 2010, 31(5): 2631-2636.
|
[24] |
NASRESFAHANI A R, SOLTANIPUR A R, FARMANESH K, et al. The effect of friction stir welding on corrosion behavior of Ti-6Al-4V[J]. Journal of Materials Engineering and Performance, 2017, 26(9): 4311-4318.
|
[25] |
WU L H, WANG D, XIAO B L, et al. Tool wear and its effect on microstructure and properties of friction stir processed Ti-6Al-4V[J]. Materials Chemistry and Physics, 2014, 146(3): 512-522.
|
[26] |
DU S S, LIU H J, JIANG M H, et al. Eliminating the cavity defect and improving mechanical properties of TA5 alloy joint by titanium alloy supporting friction stir welding[J]. Journal of Manufacturing Processes, 2021, 69: 215-222.
|
[27] |
EDWARDS P, RAMULU M. Surface residual stresses in Ti-6Al-4V friction stir welds: pre- and post-thermal stress relief[J]. Journal of Materials Engineering and Performance, 2015, 24(9): 3263-3270.
|
[28] |
LAMBRAKOS S G. Inverse thermal analysis of Ti-6Al-4V friction stir welds using numerical-analytical basis functions with pseudo-advection[J]. Journal of Materials Engineering and Performance, 2018, 27(6): 3153-3167.
|
[29] |
EDWARDS P, RAMULU M. Peak temperatures during friction stir welding of Ti-6Al-4V[J]. Science and Technology of Welding and Joining, 2010, 15(6): 468-472.
|
[30] |
HE X C, GU F S, BALL A. A review of numerical analysis of friction stir welding[J]. Progress in Materials Science, 2014, 65: 1-66.
|
[31] |
EDWARDS P D, RAMULU M. Material flow during friction stir welding of Ti-6Al-4V[J]. Journal of Materials Processing Technology, 2015, 218: 107-115.
|
[32] |
JI S, JIN Y, YUE Y, et al. The effect of tool geometry on material flow behavior of friction stir welding of titanium alloy[J]. Engineering Review, 2013, 33(2): 107-113.
|
[33] |
DU S S, LIU H J, GAO Y S, et al. Achievement of defect-free and high-ductility TA5 alloy joint by dynamic supporting friction stir welding[J]. Journal of Materials Processing Technology, 2022, 306: 117635.
|
[34] |
FALL A, JAHAZI M, KHDABANDEH A R, et al. Effect of process parameters on microstructure and mechanical properties of friction stir-welded Ti-6Al-4V joints[J]. The International Journal of Advanced Manufacturing Technology, 2017, 91(5): 2919-2931.
|
[35] |
FUJII H, SUN Y F, KATO H, et al. Investigation of welding parameter dependent microstructure and mechanical properties in friction stir welded pure Ti joints[J]. Materials Science and Engineering: A, 2010, 527(15): 3386-3391.
|
[36] |
EDWARDS P D, RAMULU M. Investigation of microstructure, surface and subsurface characteristics in titanium alloy friction stir welds of varied thicknesses[J]. Science and Technology of Welding and Joining, 2009, 14(5): 476-483.
|
[37] |
EDWARDS P, RAMULU M. Effect of process conditions on superplastic forming behaviour in Ti-6Al-4V friction stir welds[J]. Science and Technology of Welding and Joining, 2009, 14(7): 669-680.
|
[38] |
GANGWAR K, RAMULU M. Friction stir welding of titanium alloys: a review[J]. Materials & Design, 2018, 141: 230-255.
|
[39] |
EDWARDS P, RAMULU M. Identification of process parameters for friction stir welding Ti-6Al-4V[J]. Journal of Engineering Materials and Technology, 2010, 132(3): 1.
|
[40] |
MENG X C, HUANG Y X, CAO J, et al. Recent progress on control strategies for inherent issues in friction stir welding[J]. Progress in Materials Science, 2021, 115: 100706.
|
[41] |
BRASSINGTON W D P, COLEGROVE P A. Alternative friction stir welding technology for titanium-6Al-4V propellant tanks within the space industry[J]. Science and Technology of Welding and Joining, 2017, 22(4): 300-318.
|
[42] |
MIRONOV S, SATO Y S, KOKAWA H. Development of grain structure during friction stir welding of pure titanium[J]. Acta Materialia, 2009, 57(15): 4519-4528.
|
[43] |
NIMER S, WOLK J, ZUPAN M. Local property characterization of friction stir welded Ti-5111: transverse orientation measurements[J]. Acta Materialia, 2013, 61(8): 3050-3059.
|
[44] |
DAVIES P S, WYNNE B P, RAINFORTH W M, et al. Development of microstructure and crystallographic texture during stationary shoulder friction stir welding of Ti-6Al-4V[J]. Metallurgical and Materials Transactions A, 2011, 42(8): 2278-2289.
|
[45] |
PILCHAK A L, TANG W, SAHINER H, et al. Microstructure evolution during friction stir welding of mill-annealed Ti-6Al-4V[J]. Metallurgical and Materials Transactions A, 2011, 42(3): 745-762.
|
[46] |
FONDA R W, KNIPLING K E. Texture development in near-α Ti friction stir welds[J]. Acta Materialia, 2010, 58(19): 6452-6463.
|
[47] |
KNIPLING K E, FONDA R W. Texture development in the stir zone of near-α titanium friction stir welds[J]. Scripta Materialia, 2009, 60(12): 1097-1100.
|
[48] |
BUFFA G, FRATINI L, SCHNEIDER M, et al. Micro and macro mechanical characterization of friction stir welded Ti-6Al-4V lap joints through experiments and numerical simulation[J]. Journal of Materials Processing Technology, 2013, 213(12): 2312-2322.
|
[49] |
PILCHAK A L, WILLIAMS J C. Microstructure and texture evolution during friction stir processing of fully lamellar Ti-6Al-4V[J]. Metallurgical and Materials Transactions A, 2011, 42(3): 773-794.
|
[50] |
WU L H, HU X B, ZHANG X X, et al. Fabrication of high-quality Ti joint with ultrafine grains using submerged friction stirring technology and its microstructural evolution mechanism[J]. Acta Materialia, 2019, 166: 371-385.
|
[51] |
YOON S, UEJI R, FUJII H. Effect of initial microstructure on Ti-6Al-4V joint by friction stir welding[J]. Materials & Design, 2015, 88: 1269-1276.
|
[52] |
KNIPLING K E, FONDA R W. Microstructural evolution in Ti-5111 friction stir welds[J]. Metallurgical and Materials Transactions A, 2011, 42(8): 2312-2322.
|
[53] |
WU L H, WANG D, XIAO B L, et al. Microstru-ctural evolution of the thermomechanically affected zone in a Ti-6Al-4V friction stir welded joint[J]. Scripta Materialia, 2014, 78-79: 17-20.
|
[54] |
GAO F Y, GUO Y F, YU W, et al. Microstructure evolution of friction stir welding of Ti6321 titanium alloy based on the weld temperature below microstructure transformation temperature[J]. Materials Characterization, 2021, 177: 111121.
|
[55] |
ZHANG Y, SATO Y S, KOKAWA H, et al. Microstructural characteristics and mechanical properties of Ti-6Al-4V friction stir welds[J]. Materials Science and Engineering: A, 2008, 485(1-2): 448-455.
|
[56] |
ESMAILY M, NOOSHIN MORTAZAVI S, TODEHFALAH P, et al. Microstructural characterization and formation of α’ martensite phase in Ti-6Al-4V alloy butt joints produced by friction stir and gas tungsten arc welding processes[J]. Materials & Design, 2013, 47: 143-150.
|
[57] |
XU Z W, LI Z W, LV Z, et al. Effect of tool rotating speed on microstructure and mechanical properties of friction stir lap welded Ti-6Al-4V alloy[J]. The International Journal of Advanced Manufacturing Technology, 2017, 90(9): 3793-3800.
|
[58] |
KIM J D, MURUGAN S P, CHOI S W, et al. Twin boundary induced grain coarsening in friction stir welding of fine- and ultra-fine-grained commercially pure titanium base metals[J]. Metals, 2022, 12(8): 1361.
|
[59] |
FRATINI L, MICARI F, BUFFA G, et al. A new fixture for FSW processes of titanium alloys[J]. CIRP Annals, 2010, 59(1): 271-274.
|
[60] |
SONG J, LIU H Q, TAN K, et al. Inhomogeneity of microstructure in friction stir welded TC17 alloy joint and its effects on mechanical behavior[J]. Materials Science and Engineering: A, 2021, 822: 141694.
|
[61] |
ATAPOUR M, PILCHAK A L, FRANKEL G S, et al. Corrosion behavior of friction stir-processed and gas tungsten arc-welded Ti-6Al-4V[J]. Metallurgical and Materials Transactions A, 2010, 41(9): 2318-2327.
|
[62] |
XU X L, LIU Q Y, WANG J, et al. The heat treatment improving the mechanical and fatigue property of TA15 alloy joint by friction stir welding[J]. Materials Characterization, 2021, 180: 111399.
|
[63] |
LIU H J, ZHOU L, LIU Q W. Microstructural characteristics and mechanical properties of friction stir welded joints of Ti-6Al-4V titanium alloy[J]. Materials & Design, 2010, 31(3): 1650-1655.
|
[64] |
SU Y, LI W Y, LIU X C, et al. Evolution of microstructure, texture and mechanical properties of special friction stir welded T-joints for an α titanium alloy[J]. Materials Characterization, 2021, 177: 111152.
|
[65] |
STEUWER A, HATTINGH D G, JAMES M N, et al. Residual stresses, microstructure and tensile properties in Ti-6Al-4V friction stir welds[J]. Science and Technology of Welding and Joining, 2012, 17(7): 525-533.
|
[66] |
RAMULU M, EDWARDS P D, SANDERS D G, et al. Tensile properties of friction stir welded and friction stir welded-superplastically formed Ti-6Al-4V butt joints[J]. Materials & Design, 2010, 31(6): 3056-3061.
|
[67] |
XIE F F, HUANG C P, DONG C L, et al. Characterization of friction stir welded joints in TA15 titanium alloy plates[J]. Applied Mechanics and Materials, 2011, 138-139: 852-857.
|
[68] |
SHAO H, ZHAO Y Q, GE P, et al. Crack initiation and mechanical properties of TC21 titanium alloy with equiaxed microstructure[J]. Materials Science and Engineering: A, 2013, 586: 215-222.
|
[69] |
HUANG C W, ZHAO Y Q, XIN S W, et al. Effect of microstructure on tensile properties of Ti-5Al-5Mo-5V-3Cr-1Zr alloy[J]. Journal of Alloys and Compounds, 2017, 693: 582-591.
|
[70] |
ZHENG R X, LIU M W, ZHANG Z, et al. Towards strength-ductility synergy through hierarchical microstructure design in an austenitic stainless steel[J]. Scripta Materialia, 2019, 169: 76-81.
|
[71] |
SU Y, LI W Y, SHEN J J, et al. Comparing the fatigue performance of Ti-4Al-0.005B titanium alloy T-joints, welded via different friction stir welding sequences[J]. Materials Science and Engineering: A, 2022, 859: 144227.
|
[72] |
EDWARDS P, RAMULU M. Fracture toughness and fatigue crack growth in Ti-6Al-4V friction stir welds[J]. Fatigue & Fracture of Engineering Materials & Structures, 2015, 38(8): 970-982.
|
[73] |
EDWARDS P, RAMULU M. Fatigue performance of friction stir welded titanium structural joints[J]. International Journal of Fatigue, 2015, 70: 171-177.
|
[74] |
GAO F Y, GUO Y F, YANG S L, et al. Fatigue properties of friction stir welded joint of titanium alloy[J]. Materials Science and Engineering: A, 2020, 793: 139819.
|
[75] |
NAKAI M, NIINOMI M, KOMINE K, et al. High-cycle fatigue properties of an easily hot-workable (alpha plus beta)-type titanium alloy butt joint prepared by friction stir welding below beta transus temperature [J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2019:742.
|
[76] |
SANDERS D G, RAMULU M, EDWARDS P D, et al. Effects on the surface texture, superplastic forming, and fatigue performance of titanium 6Al-4V friction stir welds[J]. Journal of Materials Engineering and Performance, 2010, 19(4): 503-509.
|
[77] |
NASRESFAHANI A, SOLTANIPUR A R, FARM-ANESH K, et al. The effect of post-weld heat treatment on the corrosion behavior of different weld zones of titanium Ti-6Al-4V alloy by friction stir welding[J]. Journal of Materials Engineering and Performance, 2020, 29(10): 6784-6789.
|
[78] |
SANDERS D, EDWARDS P, GRANT G, et al. Superplastically formed friction stir welded tailored aluminum and titanium blanks for aerospace applications[J]. Journal of Materials Engineering and Performance, 2010, 19(4): 515-520.
|
[79] |
WU L H, XIAO B L, NI D R, et al. Achieving superior superplasticity from lamellar microstructure of a nugget in a friction-stir-welded Ti-6Al-4V joint[J]. Scripta Materialia, 2015, 98: 44-47.
|
[80] |
SANDERS D G, RAMULU M, KLOCK-MCCOOK E J, et al. Characterization of superplastically formed friction stir weld in titanium 6Al-4V: preliminary results[J]. Journal of Materials Engineering and Performance, 2008, 17(2): 187-192.
|
[81] |
WU L H, ZHANG H, ZENG X H, et al. Achieving superior low temperature and high strain rate superplasticity in submerged friction stir welded Ti-6AI-4V alloy[J]. Science China Materials, 2018, 61(3): 417-423.
|
[82] |
ZHOU L, LIU H J. Effect of 0.3wt% hydrogen addi-tion on the friction stir welding characteristics of Ti-6Al-4V alloy and mechanism of hydrogen-induced effect[J]. International Journal of Hydrogen Energy, 2010, 35(16): 8733-8741.
|
[83] |
JIANG X Q, WYNNE B P, MARTIN J. Variant selection in stationary shoulder friction stir welded Ti-6Al-4V alloy[J]. Journal of Materials Science & Techno-logy, 2018, 34(1): 198-208.
|
[84] |
JIANG X, WYNNE B P, MARTIN J. Microstructure and texture evolution of stationary shoulder friction stir welded Ti6Al4V alloy[J]. Science and Technology of Welding and Joining, 2015, 20(7): 594-600.
|
[85] |
MA Z W, WANG Y, JI S D, et al. Fatigue properties of Ti-6Al-4V alloy friction stir welding joint obtained under rapid cooling condition[J]. Journal of Manufacturing Processes, 2018, 36: 238-247.
|
[86] |
HAN Y, CHEN S J, JIANG X Q, et al. Effect of microstructure, texture and deformation behavior on tensile properties of electrically assisted friction stir welded Ti-6Al-4V joints[J]. Materials Characterization, 2021, 176: 111141.
|
[87] |
JI S D, LI Z W, ZHANG L G, et al. Eliminating the tearing defect in Ti-6Al-4V alloy joint by back heating assisted friction stir welding[J]. Materials Letters, 2017, 188: 21-24.
|
[1] | XU Yingchang, WANG Qian, YANG Jie, ZHOU Mu, HUANG Sensen, QI Min, MA Yingjie, LEI Jiafeng, LI Hongxiao. Effect of Welding Wire Composition and Post-Welding Heat Treatment on Microstructure and Hardness of New Type α+β Titanium Alloy Welded Joint[J]. Development and Application of Materials, 2024, 39(4): 18-27. |
[2] | MAO Liang, MA Zhaowei, YUAN Bo, LEI Xiaowei, FU Zhanbo, DU Zhibo. Study on Laser Welding Technology of TA5 Titanium Alloy with Filler Wire[J]. Development and Application of Materials, 2022, 37(1): 66-71,76. |
[3] | HUANG Wei, WANG Shaogang, LI Lize, JIN Yang. Laser Beam Welding of Titanium Alloy and Microstructure and Mechanical Properties of Welded Joint[J]. Development and Application of Materials, 2019, 34(2): 20-27. DOI: 10.19515/j.cnki.1003-1545.2019.02.004 |
[4] | GAO Rui, YIN Yayun, REN Guanpeng, LI Ruiwu. Microstructure Evolution of 2205DSS GTAW Welded Joint[J]. Development and Application of Materials, 2019, 34(1): 16-22. DOI: 10.19515/j.cnki.1003-1545.2019.01.004 |
[5] | ZHANG Daiguo, LIU Xiangqian. Research Progress in Friction Stir Welding of Copper and Copper Alloys[J]. Development and Application of Materials, 2018, 33(6): 135-144. DOI: 10.19515/j.cnki.1003-1545.2018.06.023 |
[6] | GAO Fuyang, GAO Qi, YU Yan, JIANG Peng, LIU Zhiying, GUO Yufan. Research on Microstructure of Magnesium Alloy by Friction Stir Welding[J]. Development and Application of Materials, 2017, 32(1): 67-72. DOI: 10.19515/j.cnki.1003-1545.2017.01.013 |
[7] | HAN Feng, GAO Fuyang, YU Yan, LIU Zhiying, GUO Yufan. Study on Microstructures and Properties of FSW Welded Joint of 5A01 Aluminium Alloy Plate[J]. Development and Application of Materials, 2016, 31(3): 61-64. DOI: 10.19515/j.cnki.1003-1545.2016.03.012 |
[8] | GAO Fu-yang, WU Hua-min, QIU Sheng-wen, YU Yan, YAN Yang-yang, GUO Yu-fan. Study on Microstructure and Properties of FSW Welded Joint of Aluminum Alloy[J]. Development and Application of Materials, 2015, 30(5): 25-30. DOI: 10.19515/j.cnki.1003-1545.2015.05.005 |
[9] | WANG Yue, FU Zi-lai, ZHANG Yan-yang. Corrosion Resistance Properties of Welded Joints of Aluminum Alloys Containing Trace Sc[J]. Development and Application of Materials, 2007, 22(3): 37-39,56. DOI: 10.19515/j.cnki.1003-1545.2007.03.010 |
[10] | LI Jing-long, YU Rui-bo, WANG Zhong-ping, ZHANG Li-jun, ZHOU Zheng-hang. Influence of Friction Speed on Structure and Properties of Friction Welded Dissimilar Metal Joints[J]. Development and Application of Materials, 2005, 20(4): 5-8. DOI: 10.19515/j.cnki.1003-1545.2005.04.002 |
1. |
张明鑫,曾庆业. 环保型钕铁硼电镀剂的开发过程及应用探究. 天津化工. 2024(01): 109-112 .
![]() | |
2. |
张超,黄光伟,王亚娜,陆通,石银冬,郑立允. 钕铁硼粉体的表面改性技术及应用研究进展. 表面技术. 2024(24): 40-53 .
![]() |