LI Jinshan, YAN Qi, CHEN Biao. Development and Application Progress of Titanium Matrix Composites for Aerospace[J]. Development and Application of Materials, 2024, 39(6): 1-23.
Citation: LI Jinshan, YAN Qi, CHEN Biao. Development and Application Progress of Titanium Matrix Composites for Aerospace[J]. Development and Application of Materials, 2024, 39(6): 1-23.

Development and Application Progress of Titanium Matrix Composites for Aerospace

More Information
  • Received Date: July 18, 2024
  • Recently, many countries have expressed the same vision of “sustained lunar presence” in their latest aerospace plans, which imposes higher technical requirements for materials for aerospace industry. Advanced titanium matrix composites (TMCs) have garnered significant attention from researchers owing to their high mechanical performance, friction and wear resistance, and functional characteristics. Those materials are expected to facilitate the advancement of aerospace industry and provide crucial technical support for the lunar mission. In this paper, we review the cutting-edge scientific research and current application of TMCs in aerospace, introduce the fabricating processes, microstructures and service performances of several typical reinforcements (for example, SiC fiber, nanocarbon, TiC, TiB, and short carbon fiber) in TMCs, and summarize the progress and problems of application of TMCs into the aerospace field in recent years. Besides, we compare the development and application of advanced TMCs into the key aerospace components home and abroad, highlight the research status and shortcomings of TMCs in China, and point out the important problems faced in the development of TMCs with high performance. At last, we prospect the development of TMCs in the aerospace field based on the current application.
  • [1]
    薛斌, 许忠斌, 张小岩, 等. 轻量化精密铸造成型技术在航空航天关键部件中的应用[J]. 铸造技术, 2022, 43(4): 290-294.
    [2]
    XUE H, KHAWAJA H, MOATAMEDI M. Conceptual design of high speed supersonic aircraft: a brief review on SR-71 (Blackbird) aircraft[C]//AIP Conference Proceedings. Narvik, Norway. AIP Publishing LLC, 2014: 1202-1210.
    [3]
    Hunter AFC, Society RAFH. TSR 2 with Hindsight[M]. Brighton: Royal Air Force Historical Society, 1998.
    [4]
    KOPP C. Sukhoi Su-34 fullback; Russia’s new heavy strike fighter[R]. Air Power Australia,2007.
    [5]
    STRUZIK A. NH-90 qualification according to damage tolerance[M]//KOMOROWSKI J, ed. ICAF 2011 Structural Integrity: Influence of Efficiency and Green Imperatives. Dordrecht: Springer Netherlands, 2011: 877-897.
    [6]
    [7]
    余红春. 铁翼护航新时代——中国空军歼-20战斗机影像志.(2022-12-30). http://www.81.cn/syjdt/16198976.html.
    [8]
    曹春晓. 先进战斗机歼-20和歼-31是怎么炼成的.(2022-09-15). https://m.thepaper.cn/uc.jsp?contid=1795628.
    [9]
    SMITH M, CRAIG D, HERRMANN N, et al. The Artemis program: an overview of NASA’s activities to return humans to the moon[C]. 2020 IEEE Aerospace Conference, MT, USA, 2020: 1-10.
    [10]
    国务院新闻办公室. 2021中国的航天.(2022-01-28). https://www.gov.cn/zhengce/2022-01/28/content_5670920.htm.
    [11]
    李怡彬. 印度成功使用自主研发的运载火箭发射本国气象卫星.(2024-02-18). https://www.thepaper.cn/newsDetail_forward_26380557.
    [12]
    SMITH M. Japan’s first commercial launch explodes shortly into flight on second attempt: NASASPACEFLIGHT.. https://www.nasaspaceflight.com/2024/03/space-one-kairos/.
    [13]
    曹遴, 陈彪, 贾振东, 等. 铝基复合材料研究进展及其航空航天应用[J]. 铸造技术, 2023, 44(8): 685-705.
    [14]
    黄孝余, 唐斌, 李金山. 钛基复合材料微观结构设计的研究进展[J]. 铸造技术, 2022, 43(7): 473-483.
    [15]
    沈军, 谢怀勤. 先进复合材料在航空航天领域的研发与应用[J]. 材料科学与工艺, 2008, 16(5): 737-740.
    [16]
    The missing Titanic tourist submarine 2023.. https://en.wikipedia.org/wiki/Titan_submersible_implosion.
    [17]
    GUO Z X. Towards cost effective manufacturing of Ti/SiC fibre composites and components[J]. Materials Science and Technology, 1998, 14(9-10): 864-872.
    [18]
    黄浩, 王敏涓, 李虎, 等. 连续SiC纤维增强钛基复合材料研制[J]. 航空制造技术. 2018,61(14):11.
    [19]
    FENG G H, YANG Y Q, LUO X, et al. Fatigue properties and fracture analysis of a SiC fiber-reinforced titanium matrix composite[J]. Composites Part B: Engineering, 2015, 68: 336-342.
    [20]
    TWI. England.. https://www.twi-global.com/.
    [21]
    KTW Technology. Germany.. https://ktwtechnology.de/en/.
    [22]
    TJONG S C, MAI Y W. Processing-structureprop-erty aspects of particulate- and whisker-reinforced titanium matrix composites[J]. Composites Science and Technology, 2008, 68(3-4): 583-601.
    [23]
    TJONG S C. Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets[J]. Materials Science and Engineering: R: Reports, 2013, 74(10): 281-350.
    [24]
    HWANG J, YOON T, JIN S H, et al. Enhanced mechanical properties of graphene/copper nanocomposites using a molecular-level mixing process[J]. Advanced Materials, 2013, 25(46): 6724-6729.
    [25]
    HE C N, ZHAO N Q, SHI C S, et al. Fabrication of nanocarbon composites using in situ chemical vapor deposition and their applications[J]. Advanced Materials, 2015, 27(36): 5422-5431.
    [26]
    ISSARIYAPAT A, SONG T T, VISUTTIPITUKUL P, et al. Development of core–shell-structured Ti-(N) powders for additive manufacturing and comparison of tensile properties of the additively manufactured and spark-plasma-sintered Ti-N alloys[J]. Advanced Powder Technology, 2021, 32(7): 2379-2389.
    [27]
    MU X N, ZHANG H M, CAI H N, et al. Microstructure evolution and superior tensile properties of low content graphene nanoplatelets reinforced pure Ti matrix composites[J]. Materials Science and Engineering: A, 2017, 687: 164-174.
    [28]
    LIM B, KIM C J, KIM B, et al. The effects of interfacial bonding on mechanical properties of single-walled carbon nanotube reinforced copper matrix nanocomposites[J]. Nanotechnology, 2006, 17(23): 5759-5764.
    [29]
    MU X N, CAI H N, ZHANG H M, et al. Uniform dispersion of multi-layer graphene reinforced pure titanium matrix composites via flake powder metallurgy[J]. Materials Science and Engineering: A, 2018, 725: 541-548.
    [30]
    MU X N, CAI H N, ZHANG H M, et al. Interface evolution and superior tensile properties of multi-layer graphene reinforced pure Ti matrix composite[J]. Materials & Design, 2018, 140: 431-441.
    [31]
    MUNIR K S, LI Y C, QIAN M, et al. Identifying and understanding the effect of milling energy on the synthesis of carbon nanotubes reinforced titanium metal matrix composites[J]. Carbon, 2016, 99: 384-397.
    [32]
    MUNIR K S, ZHENG Y F, ZHANG D L, et al. Microstructure and mechanical properties of carbon nanotubes reinforced titanium matrix composites fabricated via spark plasma sintering[J]. Materials Science and Engineering: A, 2017, 688: 505-523.
    [33]
    MUNIR K S, ZHENG Y F, ZHANG D L, et al. Improving the strengthening efficiency of carbon nanotubes in titanium metal matrix composites[J]. Materials Science and Engineering: A, 2017, 696: 10-25.
    [34]
    XIONG D B, CAO M, GUO Q, et al. Graphene-and-copper artificial nacre fabricated by a preform impregnation process: bioinspired strategy for strengthening-toughening of metal matrix composite[J]. ACS Nano, 2015, 9(7): 6934-6943.
    [35]
    CAO M, XIONG D B, TAN Z Q, et al. Aligning gra-phene in bulk copper: Nacre-inspired nanolaminated architecture coupled with in situ processing for enhanced mechanical properties and high electrical conductivity[J]. Carbon, 2017, 117: 65-74.
    [36]
    YAN Q, CHEN B, ZHOU X Y, et al. Effect of metal powder characteristics on structural defects of graphene nanosheets in metal composite powders dispersed by ball milling[J]. Crystals, 2021, 11(3): 260.
    [37]
    YAN Q, CHEN B, CAO L, et al. Improved mechanical properties in titanium matrix composites reinforced with quasi-continuously networked graphene nanosheets and in situ formed carbides[J]. Journal of Materials Science & Technology, 2022, 96: 85-93.
    [38]
    YAN Q, CHEN B, YE W T, et al. Extraordinary anti-wear properties of graphene-reinforced Ti composites induced by interfacial decoration[J]. ACS Applied Materials & Interfaces, 2022(23): 27118-27129.
    [39]
    LIU K Y, LI J S, WAN J, et al. Sintering-free fabrication of high-strength titanium matrix composites reinforced with carbon nanotubes[J]. Carbon, 2022, 197: 412-424.
    [40]
    晏琪, 陈彪, 李金山. 碳纳米材料增强钛基复合材料研究进展[J]. 中国材料进展, 2019, 38(11): 1061-1073.
    [41]
    贾振东, 陈彪, 李金山, 等. 熔铸法制备纳米碳增强铝基复合材料研究进展[J]. 铸造技术, 2023, 44(6): 499-513.
    [42]
    SHI W D, YAN Q, SHEN J H, et al. Enhanced adiabatic shear band susceptibility in Ti composites reinforced with quasi-continuous network of graphene nanosheets[J]. Composites Part A: Applied Science and Manufacturing, 2022, 160: 107055.
    [43]
    SHI W D, YAN Q, SHEN J H, et al. Quasi-continuous GNS network induced local dynamic recrystallization along interfaces in titanium MMCs under high strain rate loading[J]. Materials Science and Engineering: A, 2022, 852: 143723.
    [44]
    YAN Q, CHEN B, ZHANG B, et al. Inhibiting the interfacial reaction between few-layered graphene and titanium via SiC nanoparticle decoration[J]. Journal of Alloys and Compounds, 2022, 893: 162183.
    [45]
    MUNIR K S, LI Y C, LIN J X, et al. Interdependencies between graphitization of carbon nanotubes and strengthening mechanisms in titanium matrix composites[J]. Materialia, 2018, 3: 122-138.
    [46]
    GU D D, HAGEDORN Y C, MEINERS W, et al. Na-nocrystalline TiC reinforced Ti matrix bulk-form nanocomposites by selective laser melting (SLM): densification, growth mechanism and wear behavior[J]. Composites Science and Technology, 2011, 71(13): 1612-1620.
    [47]
    GU D D, CHEN H Y, DAI D H, et al. Carbon nanotubes enabled laser 3D printing of high-performance titanium with highly concentrated reinforcement[J]. iScience, 2020, 23(9): 101498.
    [48]
    YAN Q, CHEN B, LI J S. Super-high-strength graphene/titanium composites fabricated by selective laser melting[J]. Carbon, 2021, 174: 451-462.
    [49]
    YAN Q, CHEN B, JIA Z D, et al. Formation of dual quasi-continuous networked structure and its strengthening effect in Ti-6Al-4V alloy reinforced with graphene via powder bed fusion[J]. Additive Manufacturing, 2024, 92: 104364.
    [50]
    WANG J D, LI L Q, LIN P P, et al. Effect of TiC particle size on the microstructure and tensile properties of TiCp/Ti6Al4V composites fabricated by laser melting deposition[J]. Optics Laser Technology, 2018, 105: 195-206.
    [51]
    WANG J D, LI L Q, TAN C W, et al. Microstructure and tensile properties of TiCp/Ti6Al4V titanium matrix composites manufactured by laser melting deposition[J]. Journal of Materials Processing Technology, 2018, 252: 524-536.
    [52]
    LI S F, YANG Y F, MISRA R D K, et al. Interfacial/intragranular reinforcement of titanium-matrix composites produced by a novel process involving core-shell structured powder[J]. Carbon, 2020, 164: 378-390.
    [53]
    LIU Y, LI S F, MISRA R D K, et al. Planting carbon nanotubes within Ti-6Al-4V to make high-quality composite powders for 3D printing high-performance Ti-6Al-4V matrix composites[J]. Scripta Materialia, 2020, 183: 6-11.
    [54]
    WEI W H, ZHANG Q, WU W J, et al. Agglomeratio-nfree nanoscale TiC reinforced titanium matrix composites achieved by in situ laser additive manufacturing[J]. Scripta Materialia, 2020, 187: 310-316.
    [55]
    WEI W H, ZHU L, WU W J, et al. TiC/Ti6Al4V functionally graded composite fabricated by in situ laser additive manufacturing via gas-liquid reaction[J]. Journal of Alloys and Compounds, 2022, 900: 163406.
    [56]
    HUANG L J, GENG L, PENG H X. In situ (TiBw+TiCp)/Ti6Al4V composites with a network reinforcement distribution[J]. Materials Science and Engineering: A, 2010, 527(24-25): 6723-6727.
    [57]
    HUANG L J, GENG L, PENG H X, et al. Room temperature tensile fracture characteristics of in situ TiBw/Ti6Al4V composites with a quasi-continuous network architecture[J]. Scripta Materialia, 2011, 64(9): 844-847.
    [58]
    HUANG L J, AN Q, GENG L, et al. Multiscale architecture and superior high-temperature performance of discontinuously reinforced titanium matrix composites[J]. Advanced Materials, 2021, 33(6): 2000688.
    [59]
    HUANG L Q, WANG L H, QIAN M, et al. High tensile-strength and ductile titanium matrix composites strengthened by TiB nanowires[J]. Scripta Materialia, 2017, 141: 133-137.
    [60]
    LI Q, HUANG S, ZHAO Y K, et al. Simultaneous enhancements of strength, ductility, and toughness in a TiB reinforced titanium matrix composite[J]. Acta Materialia, 2023, 254: 118995.
    [61]
    JIAO Y, HUANG L J, DUAN T B, et al. Controllable two-scale network architecture and enhanced mechanical properties of (Ti5Si3+TiBw)/Ti6Al4V composites[J]. Scientific Reports, 2016, 6: 32991.
    [62]
    JIAO Y, HUANG L J, WEI S L, et al. Constructing two-scale network microstructure with nano-Ti5Si3 for superhigh creep resistance[J]. Journal of Materials Science & Technology, 2019, 35(8): 1532-1542.
    [63]
    HU Y B, CONG W L, WANG X L, et al. Laser deposition-additive manufacturing of TiB-Ti composites with novel three-dimensional quasi-continuous network microstructure: effects on strengthening and toughening[J]. Composites Part B: Engineering, 2018, 133: 91-100.
    [64]
    TRAXEL K D, BANDYOPADHYAY A. Influence of in situ ceramic reinforcement towards tailoring titanium matrix composites using laser-based additive manufacturing[J]. Additive Manufacturing, 2020, 31: 101004.
    [65]
    ZHOU Z G, LIU Y Z, LIU X H, et al. Microstructure evolution and mechanical properties of in situ Ti6Al4V-TiB composites manufactured by selective laser melting[J]. Composites Part B: Engineering, 2021, 207: 108567.
    [66]
    PAN D, LI S F, LIU L, et al. Enhanced strength and ductility of nano-TiBw-reinforced titanium matrix composites fabricated by electron beam powder bed fusion using Ti6Al4V–TiBw composite powder[J]. Additive Manufacturing, 2022, 50: 102519.
    [67]
    PAN D, ZHANG X, HOU X D, et al. TiB nano-whiskers reinforced titanium matrix composites with novel nano-reticulated microstructure and high performance via composite powder by selective laser melting[J]. Materials Science and Engineering: A, 2021, 799: 140137.
    [68]
    LIU L, LI S F, PAN D, et al. Loss-free tensile ductility of dual-structure titanium composites via an interdiff-usion and self-organization strategy[C]. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(28): e2302234120.
    [69]
    LV S, LI J S, LI S F, et al. Room-/ high-temperature mechanical properties of titanium matrix composites reinforced with discontinuous carbon fibers[J]. Advanced Engineering Materials, 2022, 24(4): 2101026.
    [70]
    LV S, LI J S, LI S F, et al. Effects of heat treatment on interfacial characteristics and mechanical properties of titanium matrix composites reinforced with discontinuous carbon fibers[J]. Journal of Alloys and Compounds, 2021, 877: 160313.
    [71]
    HAYAT M D, SINGH H, HE Z, et al. Titanium metal matrix composites: an overview[J]. Composites Part A: Applied Science and Manufacturing, 2019, 121: 418-438.
    [72]
    LEYENS C, KOCIAN F, HAUSMANN J, et al. Materials and design concepts for high performance compressor components[J]. Aerospace Science and Technology, 2003, 7(3): 201-210.
    [73]
    程德彬, 高福洋. 钛合金激光焊接技术研究进展及应用情况[J]. 材料开发与应用, 2020, 35(2): 87-93.
    [74]
    YANG H, ZHOU X B, SHI W, et al. Thickness-dependent phase evolution and bonding strength of SiC ceramics joints with active Ti interlayer[J]. Journal of the European Ceramic Society, 2017, 37(4): 1233-1241.
    [75]
    郭举乐, 田永武. 600 ℃高温钛合金的研究进展[J]. 铸造技术, 2020, 41(9): 894-896.
    [76]
    景然, 王永善, 叶茜, 等. 新型高强韧钛锆合金研究进展[J]. 铸造技术. 2018, 39(10):5.
    [77]
    MIYOSHI K, SANDERS J H, HAGER C H Jr, et al. Wear behavior of low-cost, lightweight TiC/Ti-6Al-4V composite under fretting: effectiveness of solid-film lubricant counterparts[J]. Tribology International, 2008, 41(1): 24-33.
    [78]
    DALILI N, EDRISY A, FAROKHZADEH K, et al. Improving the wear resistance of Ti-6Al-4V/TiC composites through thermal oxidation (TO)[J]. Wear, 2010, 269(7-8): 590-601.
    [79]
    WANG L, TIEU A K, ZHU Q, et al. Achieving the excellent self-lubricity and low wear of TiAl intermetallics through the addition of copper coated graphite[J]. Composites Part B: Engineering, 2020, 198: 108223.
    [80]
    YAN Q, CHEN B, YE W T, et al. Simultaneously improving mechanical, thermal, and anti-wear properties of Ti alloys using 3D-networked graphene as reinforcement[J]. Carbon, 2023, 213: 118152.
    [81]
    CARRERE N, FEYEL F, KRUCH S. Multiscale mo-delling of silicon carbide reinforced titanium MMCs: application to advanced compressor design[J]. Aerospace Science and Technology, 2003, 7(4): 307-315.
    [82]
    SINGERMAN S A, JACKSON J J. Titanium metal matrix composites for aerospace applications[J]. Superalloys, 1996:579-586.
    [83]
    DOORBAR P, DIXON M, CHATTERJEE A. Aero-engine titanium from alloys to composites[J]. Materials Science Forum, 2009, 618-619: 127-134.
    [84]
    BARETT T. Metal-matrix composites give engine-ers new design options: machine design.. https://www.machinedesign.com/materials/article/21835569/metal-matrix-composites-give-engineers-new-design-options.
    [85]
    王玉敏, 张国兴, 张旭, 等. 连续SiC纤维增强钛基复合材料研究进展[J]. 金属学报, 2016, 52(10): 1153-1170.
    [86]
    [87]
    SEETHARAMAN S, GUPTA M. Fundamentals of me-tal matrix composites[M]//Encyclopedia of Materials: Composites. Amsterdam: Elsevier, 2021: 11-29.
    [88]
    黄陆军, 耿林, 彭华新. 钛合金与钛基复合材料第二相强韧化[J]. 中国材料进展. 2019,38(03): 214-222.
    [89]
    MUSK E. SpaceX 2024.. https://www.spacex.com/.
    [90]
    丁淼, 白彦军, 晁侃. 全球最大推力、首型全固体捆绑式运载火箭成功首飞[J]. 固体火箭技术,2024(01):047.
    [91]
    中国蓝箭航天空间科技股份有限公司.朱雀三号.. https://www.spacex.com/.
    [92]
    天兵科技有限公司. 天龙三号.. https://www.spacepioneer.cc/.
    [93]
    关于天龙三号大型液体运载火箭一子级动力系统试车的情况说明.. https://mp.weixin.qq.com/s/6K2mdDWviOlk30oU-JH90Q.
  • Related Articles

    [1]GAO Yuhao, WANG Jia, WU Zepeng, CHEN Pei, ZHAI Jianfei. Study on Crack Curvature Correction Method in Fatigue Crack Growth Rate Test[J]. Development and Application of Materials, 2023, 38(2): 10-15.
    [2]XUE Gang, GONG Xuhui, SHEN Chuanzhao, LI Chong, GAO Zhenpeng. Relationship Analysis of Crack Arrest Toughness Kca and Conventional Mechanical Properties[J]. Development and Application of Materials, 2018, 33(2): 1-7. DOI: 10.19515/j.cnki.1003-1545.2018.02.001
    [3]XUE Gang, GONG Xuhui. Factors Influencing Crack Arrest Toughness Kca of High Strength Thick Plate[J]. Development and Application of Materials, 2018, 33(1): 1-6. DOI: 10.19515/j.cnki.1003-1545.2018.01.001
    [4]XUE Gang, GONG Xuhui. Non-uniqueness Certification of Crack Arrest Toughness Kca Test Results[J]. Development and Application of Materials, 2017, 32(6): 1-3. DOI: 10.19515/j.cnki.1003-1545.2017.06.001
    [5]YANG Huan, WANG Tao, XUE Gang, LIU Jian. Expression of Diffusible Hydrogen Escape Velocity for 590 MPa Grade High Strength Electrode[J]. Development and Application of Materials, 2015, 30(2): 4-8. DOI: 10.19515/j.cnki.1003-1545.2015.02.002
    [6]ZHANG Li-juan, ZHANG Ya-jun, GAO Ling-qing. Study on Relationship Between Length and Depth of Surface Crack Propagation under Cantilever Bend Loading[J]. Development and Application of Materials, 2014, 29(4): 1-7. DOI: 10.19515/j.cnki.1003-1545.2014.04.001
    [7]XUE Gang, GONG Xu-hui, XU Ke, WANG Ren-fu. A Comparative Analysis on Crack Arrest Temperature and Crack Arrest Toughness of Ship Steels[J]. Development and Application of Materials, 2014, 29(1): 9-13. DOI: 10.19515/j.cnki.1003-1545.2014.01.002
    [8]CHANG Lei, DENG Chun-feng, REN Fang-jie, SHAO Fei, WU Chun-xue, MEI Peng-cheng. Numerical Simulation of Fatigue Crack Growth on the Pressure Vessel’s Surface[J]. Development and Application of Materials, 2013, 28(5): 95-100. DOI: 10.19515/j.cnki.1003-1545.2013.05.022
    [9]YANG Guang, XUE Gang, WANG Ren-fu, GONG Xu-hui. The Calculation of Plastic Component of CTOD Inconsideration of Crack Extension[J]. Development and Application of Materials, 2012, 27(2): 77-79. DOI: 10.19515/j.cnki.1003-1545.2012.02.018
    [10]Yuan Jingsong. Approximate Calculation of Crack Propagation Rate of Metal Corrosion Fatigue[J]. Development and Application of Materials, 2000, 15(2): 26-29. DOI: 10.19515/j.cnki.1003-1545.2000.02.007

Catalog

    Article Metrics

    Article views (118) PDF downloads (54) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return