Citation: | LI Jinshan, YAN Qi, CHEN Biao. Development and Application Progress of Titanium Matrix Composites for Aerospace[J]. Development and Application of Materials, 2024, 39(6): 1-23. |
[1] |
薛斌, 许忠斌, 张小岩, 等. 轻量化精密铸造成型技术在航空航天关键部件中的应用[J]. 铸造技术, 2022, 43(4): 290-294.
|
[2] |
XUE H, KHAWAJA H, MOATAMEDI M. Conceptual design of high speed supersonic aircraft: a brief review on SR-71 (Blackbird) aircraft[C]//AIP Conference Proceedings. Narvik, Norway. AIP Publishing LLC, 2014: 1202-1210.
|
[3] |
Hunter AFC, Society RAFH. TSR 2 with Hindsight[M]. Brighton: Royal Air Force Historical Society, 1998.
|
[4] |
KOPP C. Sukhoi Su-34 fullback; Russia’s new heavy strike fighter[R]. Air Power Australia,2007.
|
[5] |
STRUZIK A. NH-90 qualification according to damage tolerance[M]//KOMOROWSKI J, ed. ICAF 2011 Structural Integrity: Influence of Efficiency and Green Imperatives. Dordrecht: Springer Netherlands, 2011: 877-897.
|
[6] |
A fully optimized airframe.. https://www.dassault-aviation.com/en/defense/rafale/a-fully-optimized-airframe/.
|
[7] |
余红春. 铁翼护航新时代——中国空军歼-20战斗机影像志.(2022-12-30). http://www.81.cn/syjdt/16198976.html.
|
[8] |
曹春晓. 先进战斗机歼-20和歼-31是怎么炼成的.(2022-09-15). https://m.thepaper.cn/uc.jsp?contid=1795628.
|
[9] |
SMITH M, CRAIG D, HERRMANN N, et al. The Artemis program: an overview of NASA’s activities to return humans to the moon[C]. 2020 IEEE Aerospace Conference, MT, USA, 2020: 1-10.
|
[10] |
国务院新闻办公室. 2021中国的航天.(2022-01-28). https://www.gov.cn/zhengce/2022-01/28/content_5670920.htm.
|
[11] |
李怡彬. 印度成功使用自主研发的运载火箭发射本国气象卫星.(2024-02-18). https://www.thepaper.cn/newsDetail_forward_26380557.
|
[12] |
SMITH M. Japan’s first commercial launch explodes shortly into flight on second attempt: NASASPACEFLIGHT.. https://www.nasaspaceflight.com/2024/03/space-one-kairos/.
|
[13] |
曹遴, 陈彪, 贾振东, 等. 铝基复合材料研究进展及其航空航天应用[J]. 铸造技术, 2023, 44(8): 685-705.
|
[14] |
黄孝余, 唐斌, 李金山. 钛基复合材料微观结构设计的研究进展[J]. 铸造技术, 2022, 43(7): 473-483.
|
[15] |
沈军, 谢怀勤. 先进复合材料在航空航天领域的研发与应用[J]. 材料科学与工艺, 2008, 16(5): 737-740.
|
[16] |
The missing Titanic tourist submarine 2023.. https://en.wikipedia.org/wiki/Titan_submersible_implosion.
|
[17] |
GUO Z X. Towards cost effective manufacturing of Ti/SiC fibre composites and components[J]. Materials Science and Technology, 1998, 14(9-10): 864-872.
|
[18] |
黄浩, 王敏涓, 李虎, 等. 连续SiC纤维增强钛基复合材料研制[J]. 航空制造技术. 2018,61(14):11.
|
[19] |
FENG G H, YANG Y Q, LUO X, et al. Fatigue properties and fracture analysis of a SiC fiber-reinforced titanium matrix composite[J]. Composites Part B: Engineering, 2015, 68: 336-342.
|
[20] |
TWI. England.. https://www.twi-global.com/.
|
[21] |
KTW Technology. Germany.. https://ktwtechnology.de/en/.
|
[22] |
TJONG S C, MAI Y W. Processing-structureprop-erty aspects of particulate- and whisker-reinforced titanium matrix composites[J]. Composites Science and Technology, 2008, 68(3-4): 583-601.
|
[23] |
TJONG S C. Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets[J]. Materials Science and Engineering: R: Reports, 2013, 74(10): 281-350.
|
[24] |
HWANG J, YOON T, JIN S H, et al. Enhanced mechanical properties of graphene/copper nanocomposites using a molecular-level mixing process[J]. Advanced Materials, 2013, 25(46): 6724-6729.
|
[25] |
HE C N, ZHAO N Q, SHI C S, et al. Fabrication of nanocarbon composites using in situ chemical vapor deposition and their applications[J]. Advanced Materials, 2015, 27(36): 5422-5431.
|
[26] |
ISSARIYAPAT A, SONG T T, VISUTTIPITUKUL P, et al. Development of core–shell-structured Ti-(N) powders for additive manufacturing and comparison of tensile properties of the additively manufactured and spark-plasma-sintered Ti-N alloys[J]. Advanced Powder Technology, 2021, 32(7): 2379-2389.
|
[27] |
MU X N, ZHANG H M, CAI H N, et al. Microstructure evolution and superior tensile properties of low content graphene nanoplatelets reinforced pure Ti matrix composites[J]. Materials Science and Engineering: A, 2017, 687: 164-174.
|
[28] |
LIM B, KIM C J, KIM B, et al. The effects of interfacial bonding on mechanical properties of single-walled carbon nanotube reinforced copper matrix nanocomposites[J]. Nanotechnology, 2006, 17(23): 5759-5764.
|
[29] |
MU X N, CAI H N, ZHANG H M, et al. Uniform dispersion of multi-layer graphene reinforced pure titanium matrix composites via flake powder metallurgy[J]. Materials Science and Engineering: A, 2018, 725: 541-548.
|
[30] |
MU X N, CAI H N, ZHANG H M, et al. Interface evolution and superior tensile properties of multi-layer graphene reinforced pure Ti matrix composite[J]. Materials & Design, 2018, 140: 431-441.
|
[31] |
MUNIR K S, LI Y C, QIAN M, et al. Identifying and understanding the effect of milling energy on the synthesis of carbon nanotubes reinforced titanium metal matrix composites[J]. Carbon, 2016, 99: 384-397.
|
[32] |
MUNIR K S, ZHENG Y F, ZHANG D L, et al. Microstructure and mechanical properties of carbon nanotubes reinforced titanium matrix composites fabricated via spark plasma sintering[J]. Materials Science and Engineering: A, 2017, 688: 505-523.
|
[33] |
MUNIR K S, ZHENG Y F, ZHANG D L, et al. Improving the strengthening efficiency of carbon nanotubes in titanium metal matrix composites[J]. Materials Science and Engineering: A, 2017, 696: 10-25.
|
[34] |
XIONG D B, CAO M, GUO Q, et al. Graphene-and-copper artificial nacre fabricated by a preform impregnation process: bioinspired strategy for strengthening-toughening of metal matrix composite[J]. ACS Nano, 2015, 9(7): 6934-6943.
|
[35] |
CAO M, XIONG D B, TAN Z Q, et al. Aligning gra-phene in bulk copper: Nacre-inspired nanolaminated architecture coupled with in situ processing for enhanced mechanical properties and high electrical conductivity[J]. Carbon, 2017, 117: 65-74.
|
[36] |
YAN Q, CHEN B, ZHOU X Y, et al. Effect of metal powder characteristics on structural defects of graphene nanosheets in metal composite powders dispersed by ball milling[J]. Crystals, 2021, 11(3): 260.
|
[37] |
YAN Q, CHEN B, CAO L, et al. Improved mechanical properties in titanium matrix composites reinforced with quasi-continuously networked graphene nanosheets and in situ formed carbides[J]. Journal of Materials Science & Technology, 2022, 96: 85-93.
|
[38] |
YAN Q, CHEN B, YE W T, et al. Extraordinary anti-wear properties of graphene-reinforced Ti composites induced by interfacial decoration[J]. ACS Applied Materials & Interfaces, 2022(23): 27118-27129.
|
[39] |
LIU K Y, LI J S, WAN J, et al. Sintering-free fabrication of high-strength titanium matrix composites reinforced with carbon nanotubes[J]. Carbon, 2022, 197: 412-424.
|
[40] |
晏琪, 陈彪, 李金山. 碳纳米材料增强钛基复合材料研究进展[J]. 中国材料进展, 2019, 38(11): 1061-1073.
|
[41] |
贾振东, 陈彪, 李金山, 等. 熔铸法制备纳米碳增强铝基复合材料研究进展[J]. 铸造技术, 2023, 44(6): 499-513.
|
[42] |
SHI W D, YAN Q, SHEN J H, et al. Enhanced adiabatic shear band susceptibility in Ti composites reinforced with quasi-continuous network of graphene nanosheets[J]. Composites Part A: Applied Science and Manufacturing, 2022, 160: 107055.
|
[43] |
SHI W D, YAN Q, SHEN J H, et al. Quasi-continuous GNS network induced local dynamic recrystallization along interfaces in titanium MMCs under high strain rate loading[J]. Materials Science and Engineering: A, 2022, 852: 143723.
|
[44] |
YAN Q, CHEN B, ZHANG B, et al. Inhibiting the interfacial reaction between few-layered graphene and titanium via SiC nanoparticle decoration[J]. Journal of Alloys and Compounds, 2022, 893: 162183.
|
[45] |
MUNIR K S, LI Y C, LIN J X, et al. Interdependencies between graphitization of carbon nanotubes and strengthening mechanisms in titanium matrix composites[J]. Materialia, 2018, 3: 122-138.
|
[46] |
GU D D, HAGEDORN Y C, MEINERS W, et al. Na-nocrystalline TiC reinforced Ti matrix bulk-form nanocomposites by selective laser melting (SLM): densification, growth mechanism and wear behavior[J]. Composites Science and Technology, 2011, 71(13): 1612-1620.
|
[47] |
GU D D, CHEN H Y, DAI D H, et al. Carbon nanotubes enabled laser 3D printing of high-performance titanium with highly concentrated reinforcement[J]. iScience, 2020, 23(9): 101498.
|
[48] |
YAN Q, CHEN B, LI J S. Super-high-strength graphene/titanium composites fabricated by selective laser melting[J]. Carbon, 2021, 174: 451-462.
|
[49] |
YAN Q, CHEN B, JIA Z D, et al. Formation of dual quasi-continuous networked structure and its strengthening effect in Ti-6Al-4V alloy reinforced with graphene via powder bed fusion[J]. Additive Manufacturing, 2024, 92: 104364.
|
[50] |
WANG J D, LI L Q, LIN P P, et al. Effect of TiC particle size on the microstructure and tensile properties of TiCp/Ti6Al4V composites fabricated by laser melting deposition[J]. Optics Laser Technology, 2018, 105: 195-206.
|
[51] |
WANG J D, LI L Q, TAN C W, et al. Microstructure and tensile properties of TiCp/Ti6Al4V titanium matrix composites manufactured by laser melting deposition[J]. Journal of Materials Processing Technology, 2018, 252: 524-536.
|
[52] |
LI S F, YANG Y F, MISRA R D K, et al. Interfacial/intragranular reinforcement of titanium-matrix composites produced by a novel process involving core-shell structured powder[J]. Carbon, 2020, 164: 378-390.
|
[53] |
LIU Y, LI S F, MISRA R D K, et al. Planting carbon nanotubes within Ti-6Al-4V to make high-quality composite powders for 3D printing high-performance Ti-6Al-4V matrix composites[J]. Scripta Materialia, 2020, 183: 6-11.
|
[54] |
WEI W H, ZHANG Q, WU W J, et al. Agglomeratio-nfree nanoscale TiC reinforced titanium matrix composites achieved by in situ laser additive manufacturing[J]. Scripta Materialia, 2020, 187: 310-316.
|
[55] |
WEI W H, ZHU L, WU W J, et al. TiC/Ti6Al4V functionally graded composite fabricated by in situ laser additive manufacturing via gas-liquid reaction[J]. Journal of Alloys and Compounds, 2022, 900: 163406.
|
[56] |
HUANG L J, GENG L, PENG H X. In situ (TiBw+TiCp)/Ti6Al4V composites with a network reinforcement distribution[J]. Materials Science and Engineering: A, 2010, 527(24-25): 6723-6727.
|
[57] |
HUANG L J, GENG L, PENG H X, et al. Room temperature tensile fracture characteristics of in situ TiBw/Ti6Al4V composites with a quasi-continuous network architecture[J]. Scripta Materialia, 2011, 64(9): 844-847.
|
[58] |
HUANG L J, AN Q, GENG L, et al. Multiscale architecture and superior high-temperature performance of discontinuously reinforced titanium matrix composites[J]. Advanced Materials, 2021, 33(6): 2000688.
|
[59] |
HUANG L Q, WANG L H, QIAN M, et al. High tensile-strength and ductile titanium matrix composites strengthened by TiB nanowires[J]. Scripta Materialia, 2017, 141: 133-137.
|
[60] |
LI Q, HUANG S, ZHAO Y K, et al. Simultaneous enhancements of strength, ductility, and toughness in a TiB reinforced titanium matrix composite[J]. Acta Materialia, 2023, 254: 118995.
|
[61] |
JIAO Y, HUANG L J, DUAN T B, et al. Controllable two-scale network architecture and enhanced mechanical properties of (Ti5Si3+TiBw)/Ti6Al4V composites[J]. Scientific Reports, 2016, 6: 32991.
|
[62] |
JIAO Y, HUANG L J, WEI S L, et al. Constructing two-scale network microstructure with nano-Ti5Si3 for superhigh creep resistance[J]. Journal of Materials Science & Technology, 2019, 35(8): 1532-1542.
|
[63] |
HU Y B, CONG W L, WANG X L, et al. Laser deposition-additive manufacturing of TiB-Ti composites with novel three-dimensional quasi-continuous network microstructure: effects on strengthening and toughening[J]. Composites Part B: Engineering, 2018, 133: 91-100.
|
[64] |
TRAXEL K D, BANDYOPADHYAY A. Influence of in situ ceramic reinforcement towards tailoring titanium matrix composites using laser-based additive manufacturing[J]. Additive Manufacturing, 2020, 31: 101004.
|
[65] |
ZHOU Z G, LIU Y Z, LIU X H, et al. Microstructure evolution and mechanical properties of in situ Ti6Al4V-TiB composites manufactured by selective laser melting[J]. Composites Part B: Engineering, 2021, 207: 108567.
|
[66] |
PAN D, LI S F, LIU L, et al. Enhanced strength and ductility of nano-TiBw-reinforced titanium matrix composites fabricated by electron beam powder bed fusion using Ti6Al4V–TiBw composite powder[J]. Additive Manufacturing, 2022, 50: 102519.
|
[67] |
PAN D, ZHANG X, HOU X D, et al. TiB nano-whiskers reinforced titanium matrix composites with novel nano-reticulated microstructure and high performance via composite powder by selective laser melting[J]. Materials Science and Engineering: A, 2021, 799: 140137.
|
[68] |
LIU L, LI S F, PAN D, et al. Loss-free tensile ductility of dual-structure titanium composites via an interdiff-usion and self-organization strategy[C]. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(28): e2302234120.
|
[69] |
LV S, LI J S, LI S F, et al. Room-/ high-temperature mechanical properties of titanium matrix composites reinforced with discontinuous carbon fibers[J]. Advanced Engineering Materials, 2022, 24(4): 2101026.
|
[70] |
LV S, LI J S, LI S F, et al. Effects of heat treatment on interfacial characteristics and mechanical properties of titanium matrix composites reinforced with discontinuous carbon fibers[J]. Journal of Alloys and Compounds, 2021, 877: 160313.
|
[71] |
HAYAT M D, SINGH H, HE Z, et al. Titanium metal matrix composites: an overview[J]. Composites Part A: Applied Science and Manufacturing, 2019, 121: 418-438.
|
[72] |
LEYENS C, KOCIAN F, HAUSMANN J, et al. Materials and design concepts for high performance compressor components[J]. Aerospace Science and Technology, 2003, 7(3): 201-210.
|
[73] |
程德彬, 高福洋. 钛合金激光焊接技术研究进展及应用情况[J]. 材料开发与应用, 2020, 35(2): 87-93.
|
[74] |
YANG H, ZHOU X B, SHI W, et al. Thickness-dependent phase evolution and bonding strength of SiC ceramics joints with active Ti interlayer[J]. Journal of the European Ceramic Society, 2017, 37(4): 1233-1241.
|
[75] |
郭举乐, 田永武. 600 ℃高温钛合金的研究进展[J]. 铸造技术, 2020, 41(9): 894-896.
|
[76] |
景然, 王永善, 叶茜, 等. 新型高强韧钛锆合金研究进展[J]. 铸造技术. 2018, 39(10):5.
|
[77] |
MIYOSHI K, SANDERS J H, HAGER C H Jr, et al. Wear behavior of low-cost, lightweight TiC/Ti-6Al-4V composite under fretting: effectiveness of solid-film lubricant counterparts[J]. Tribology International, 2008, 41(1): 24-33.
|
[78] |
DALILI N, EDRISY A, FAROKHZADEH K, et al. Improving the wear resistance of Ti-6Al-4V/TiC composites through thermal oxidation (TO)[J]. Wear, 2010, 269(7-8): 590-601.
|
[79] |
WANG L, TIEU A K, ZHU Q, et al. Achieving the excellent self-lubricity and low wear of TiAl intermetallics through the addition of copper coated graphite[J]. Composites Part B: Engineering, 2020, 198: 108223.
|
[80] |
YAN Q, CHEN B, YE W T, et al. Simultaneously improving mechanical, thermal, and anti-wear properties of Ti alloys using 3D-networked graphene as reinforcement[J]. Carbon, 2023, 213: 118152.
|
[81] |
CARRERE N, FEYEL F, KRUCH S. Multiscale mo-delling of silicon carbide reinforced titanium MMCs: application to advanced compressor design[J]. Aerospace Science and Technology, 2003, 7(4): 307-315.
|
[82] |
SINGERMAN S A, JACKSON J J. Titanium metal matrix composites for aerospace applications[J]. Superalloys, 1996:579-586.
|
[83] |
DOORBAR P, DIXON M, CHATTERJEE A. Aero-engine titanium from alloys to composites[J]. Materials Science Forum, 2009, 618-619: 127-134.
|
[84] |
BARETT T. Metal-matrix composites give engine-ers new design options: machine design.. https://www.machinedesign.com/materials/article/21835569/metal-matrix-composites-give-engineers-new-design-options.
|
[85] |
王玉敏, 张国兴, 张旭, 等. 连续SiC纤维增强钛基复合材料研究进展[J]. 金属学报, 2016, 52(10): 1153-1170.
|
[86] |
Advanced materials technology 2024. https://www.amt-advanced-materials-technology.com/materials/titanium-composites/.
|
[87] |
SEETHARAMAN S, GUPTA M. Fundamentals of me-tal matrix composites[M]//Encyclopedia of Materials: Composites. Amsterdam: Elsevier, 2021: 11-29.
|
[88] |
黄陆军, 耿林, 彭华新. 钛合金与钛基复合材料第二相强韧化[J]. 中国材料进展. 2019,38(03): 214-222.
|
[89] |
MUSK E. SpaceX 2024.. https://www.spacex.com/.
|
[90] |
丁淼, 白彦军, 晁侃. 全球最大推力、首型全固体捆绑式运载火箭成功首飞[J]. 固体火箭技术,2024(01):047.
|
[91] |
中国蓝箭航天空间科技股份有限公司.朱雀三号.. https://www.spacex.com/.
|
[92] |
天兵科技有限公司. 天龙三号.. https://www.spacepioneer.cc/.
|
[93] |
关于天龙三号大型液体运载火箭一子级动力系统试车的情况说明.. https://mp.weixin.qq.com/s/6K2mdDWviOlk30oU-JH90Q.
|
[1] | GAO Yuhao, WANG Jia, WU Zepeng, CHEN Pei, ZHAI Jianfei. Study on Crack Curvature Correction Method in Fatigue Crack Growth Rate Test[J]. Development and Application of Materials, 2023, 38(2): 10-15. |
[2] | XUE Gang, GONG Xuhui, SHEN Chuanzhao, LI Chong, GAO Zhenpeng. Relationship Analysis of Crack Arrest Toughness Kca and Conventional Mechanical Properties[J]. Development and Application of Materials, 2018, 33(2): 1-7. DOI: 10.19515/j.cnki.1003-1545.2018.02.001 |
[3] | XUE Gang, GONG Xuhui. Factors Influencing Crack Arrest Toughness Kca of High Strength Thick Plate[J]. Development and Application of Materials, 2018, 33(1): 1-6. DOI: 10.19515/j.cnki.1003-1545.2018.01.001 |
[4] | XUE Gang, GONG Xuhui. Non-uniqueness Certification of Crack Arrest Toughness Kca Test Results[J]. Development and Application of Materials, 2017, 32(6): 1-3. DOI: 10.19515/j.cnki.1003-1545.2017.06.001 |
[5] | YANG Huan, WANG Tao, XUE Gang, LIU Jian. Expression of Diffusible Hydrogen Escape Velocity for 590 MPa Grade High Strength Electrode[J]. Development and Application of Materials, 2015, 30(2): 4-8. DOI: 10.19515/j.cnki.1003-1545.2015.02.002 |
[6] | ZHANG Li-juan, ZHANG Ya-jun, GAO Ling-qing. Study on Relationship Between Length and Depth of Surface Crack Propagation under Cantilever Bend Loading[J]. Development and Application of Materials, 2014, 29(4): 1-7. DOI: 10.19515/j.cnki.1003-1545.2014.04.001 |
[7] | XUE Gang, GONG Xu-hui, XU Ke, WANG Ren-fu. A Comparative Analysis on Crack Arrest Temperature and Crack Arrest Toughness of Ship Steels[J]. Development and Application of Materials, 2014, 29(1): 9-13. DOI: 10.19515/j.cnki.1003-1545.2014.01.002 |
[8] | CHANG Lei, DENG Chun-feng, REN Fang-jie, SHAO Fei, WU Chun-xue, MEI Peng-cheng. Numerical Simulation of Fatigue Crack Growth on the Pressure Vessel’s Surface[J]. Development and Application of Materials, 2013, 28(5): 95-100. DOI: 10.19515/j.cnki.1003-1545.2013.05.022 |
[9] | YANG Guang, XUE Gang, WANG Ren-fu, GONG Xu-hui. The Calculation of Plastic Component of CTOD Inconsideration of Crack Extension[J]. Development and Application of Materials, 2012, 27(2): 77-79. DOI: 10.19515/j.cnki.1003-1545.2012.02.018 |
[10] | Yuan Jingsong. Approximate Calculation of Crack Propagation Rate of Metal Corrosion Fatigue[J]. Development and Application of Materials, 2000, 15(2): 26-29. DOI: 10.19515/j.cnki.1003-1545.2000.02.007 |