Citation: | LIU Xuesong, GUO Shaofei. A Review on Integrity Evaluation and Fatigue Life Prediction Technology of Welded Joint in Ship Engineering[J]. Development and Application of Materials, 2023, 38(5): 75-85. |
[1] |
STAVOVY A B. Ultimate Longitudinal strength[J]. Marine Technology Society Journal, 1970(7).
|
[2] |
PAIK J K. Principles and criteria for ultimate limit state design and strength assessment of ship hulls[J]. The International Journal of Maritime Engineering, 2004, 146(a3): 10.
|
[3] |
熊晓枫. 薄壁结构非线性有限元数值计算及其稳定性分析研究[D]. 西安: 西北工业大学, 2006.
|
[4] |
杜庆喜. 船体结构强度直接计算方法研究[D]. 武汉: 武汉理工大学, 2007.
|
[5] |
田文静. 薄膜型LNG船的总纵极限承载能力研究[D]. 武汉: 华中科技大学, 2008.
|
[6] |
彭大炜. 舰船新型甲板结构型式的极限强度研究[D]. 上海: 上海交通大学, 2010.
|
[7] |
何福志, 马建军, 万正权. 船体结构总纵极限强度的简化逐步破坏分析方法[J]. 中国造船, 2005, 46(2): 17-27.
|
[8] |
SMITH C S. Influence of local compressive failure on ultimate longitudinal strength of a ship’s hull[J]. PRADS, 1977, 77:73-79.
|
[9] |
Cramer E H, Robert L, Olaisen K. Fatigue asses-sment of ship structure[J]. Marine Structures, 1995, 8(4): 359-383.
|
[10] |
US-ABS. Rules for building and classing steel vessels[S]. Houston: American Bureau of Shipping, 2002.
|
[11] |
中国船级社. 船体结构疲劳强度指南[S]. 北京:人民交通出版社, 2001.
|
[12] |
邓彩艳. 海底油气管道断裂性能及安全评定研究[D]. 天津: 天津大学, 2003: 4-7.
|
[13] |
MILNE I, AINSWORTH R A, DOWLING A R, et al. Assessment of the integrity of structures containing defects[J]. International Journal of Pressure Vessels and Piping, 1988, 32(1-4): 3-104.
|
[14] |
AINSWORTH R A, BANNISTER A C, ZERBST U. An overview of the European flaw assessment procedure SINTAP and its validation[J]. Intern-ational Journal of Pressure Vessels and Piping, 2000, 77(14-15): 869-876.
|
[15] |
WEBSTER S, BANNISTER A. Structural integrity assessment procedure for Europe of the SINTAP programme overview[J]. Engineering Fracture Mechan-ics, 2000, 67(6): 481-514.
|
[16] |
LIE S T, YANG Z M, GHO W M. Validation of BS7910: 2005 failure assessment diagrams for cracked square hollow section T-, Y- and K-joints[J]. International Journal of Pressure Vessels and Piping, 2009, 86(5): 335-344.
|
[17] |
马敬东, 李亚宁. 国际缺陷评定方法研究进展[J]. 材料导报, 2006, 20(4): 86-89.
|
[18] |
BUDDEN P J, SHARPLES J K, DOWLING A R. The R6 procedure: recent developments and comparison with alternative approaches[J]. International Journal of Pressure Vessels and Piping, 2000, 77(14-15): 895-903.
|
[19] |
Hobbacher A F. Fatigue design of welded joints and components (Second Edition)[S]. IIW document IIW-2259-15, 2016.
|
[20] |
BAUMGARTNER J. Enhancement of the fatigue st-rength assessment of welded components by consideration of mean and residual stresses in the crack initiation and propagation phases[J]. Welding in the World, 2016, 60(3): 547-558.
|
[21] |
VÖHRINGER O. Relaxation of residual stresses by annealing or mechanical treatment[M]//MORDFIN L., Ed. Residual Stresses. Amsterdam: Elsevier, 1987: 367-396.
|
[22] |
HENSEL J, NITSCHKE-PAGEL T, DILGER K. Effects of residual stresses and compressive mean stresses on the fatigue strength of longitudinal fillet-welded gussets[J]. Welding in the World, 2016, 60(2): 267-281.
|
[23] |
赵智力. 基于等承载能力原则的高强钢低匹配焊接接头设计[D]. 哈尔滨: 哈尔滨工业大学, 2009: 24-62.
|
[24] |
王涛. 基于断裂参量K因子的焊接接头等承载设计[D]. 哈尔滨: 哈尔滨工业大学, 2012: 19-30.
|
[25] |
王佳杰. 低匹配焊接接头弯曲等承载设计及随焊整形[D]. 哈尔滨: 哈尔滨工业大学, 2015: 24-50.
|
[26] |
NYKÄNEN T, MARQUIS G, BJÖRK T. A simplified fatigue assessment method for high quality welded cruciform joints[J]. International Journal of Fatigue, 2009, 31(1): 79-87.
|
[27] |
SAIPRASERTKIT K, HANJI T, MIKI C. Fatigue strength assessment of load-carrying cruciform joints with material mismatching in low-and high-cycle fatigue regions based on the effective Notch concept[J]. International Journal of Fatigue, 2012, 40: 120-128.
|
[28] |
British Standards Institution. Guide to fatigue design and assessment of steel products[S].BSI Standards Publication, 2014.
|
[29] |
Recommended practice DNV-RP-C203: fatigue design of offshore steel structures[S]. Det Norske Veritas, 2013.
|
[30] |
Eurocode 3-Design of steel structures-Part 1-12: A-dditional rules for the extension of EN 1993 up to steel grades S 700: DS/EN 1993-1-12: 2007[S]. Danish Standards, 2007.
|
[31] |
The American Society of Mechanical Engineers. De-sign and fabrication of pressure vessels[M], Boiler and Pressure Vessel Code Section. 2012.
|
[32] |
JSSC. Fatigue design recommendations for steel structures[S].Tokyo: Japanese Society of Steel Construction, 1995.
|
[33] |
GOYAL R, BOGDANOV S, EL-ZEIN M, et al. Fracture mechanics based estimation of fatigue lives of laser welded joints[J]. Engineering Failure Analysis, 2018, 93: 340-355.
|
[34] |
CITARELLA R, CARLONE P, LEPORE M, et al. Numerical-experimental crack growth analysis in AA2024-T3 FSWed butt joints[J]. Advances in Engineering Software, 2015, 80: 47-57.
|
[35] |
PATEL V K, BHOLE S D, CHEN D L. Fatigue life estimation of ultrasonic spot welded Mg alloy joints[J]. Materials & Design (1980-2015), 2014, 62: 124-132.
|
[36] |
SPRINGER M, PETTERMANN H E. Fatigue life predictions of metal structures based on a low-cycle, multiaxial fatigue damage model[J]. International Journal of Fatigue, 2018, 116: 355-365.
|
[37] |
HORMOZI R, BIGLARI F, NIKBIN K. Taguchi sensitivity analysis of damage parameters for predicting the damage Mechanism of 9Cr steel under low-cycle fatigue test[J]. Fatigue & Fracture of Engineering Materials & Structures, 2014, 37(11): 1211-1222.
|
[38] |
FENG L Y, QIAN X D. Low cycle fatigue test and enhanced lifetime estimation of high-strength steel S550 under different strain ratios[J]. Marine Structures, 2018, 61: 343-360.
|
[39] |
HU P, MENG Q C, HU W P, et al. A continuum damage mechanics approach coupled with an improved pit evolution model for the corrosion fatigue of aluminum alloy[J]. Corrosion Science, 2016, 113: 78-90.
|
[40] |
JIE Z Y, LI Y D, WEI X, et al. Fatigue life prediction of welded joints with artificial corrosion pits based on continuum damage mechanics[J]. Journal of Constructional Steel Research, 2018, 148: 542-550.
|
[41] |
VAN DO V N, LEE C H, CHANG K H. High cycle fatigue analysis in presence of residual stresses by using a continuum damage mechanics model[J]. International Journal of Fatigue, 2015, 70: 51-62.
|
[42] |
SUSMEL L, TAYLOR D. A critical distance/plane method to estimate finite life of notched components under variable amplitude uniaxial/multiaxial fatigue loading[J]. International Journal of Fatigue, 2012, 38: 7-24.
|
[43] |
SUSMEL L, TAYLOR D. The Theory of Critical Distances to estimate lifetime of notched components subjected to variable amplitude uniaxial fatigue loading[J]. International Journal of Fatigue, 2011, 33(7): 900-911.
|
[44] |
AL ZAMZAMI I, SUSMEL L. On the use of hot-spot stresses, effective Notch stresses and the Point Method to estimate lifetime of inclined welds subjected to uniaxial fatigue loading[J]. International Journal of Fatigue, 2018, 117: 432-449.
|
[45] |
AL ZAMZAMI I, DAVISON B, SUSMEL L. Nominal and local stress quantities to design aluminium-to-steel thin welded joints against fatigue[J]. International Journal of Fatigue, 2019, 123: 279-295.
|
[46] |
BERTO F. Fatigue and fracture assessment of notched components by means of the Strain Energy Density[J]. Engineering Fracture Mechanics, 2016, 167: 176-187.
|
[47] |
MENEGHETTI G, CAMPAGNOLO A, BERTO F, et al. Notched Ti-6Al-4V titanium bars under multiaxial fatigue: synthesis of crack initiation life based on the averaged strain energy density[J]. Theoretical and Applied Fracture Mechanics, 2018, 96: 509-533.
|
[48] |
MENEGHETTI G, CAMPAGNOLO A, BABINI V, et al. Multiaxial fatigue assessment of welded steel details according to the peak stress method: industrial case studies[J]. International Journal of Fatigue, 2019, 125: 362-380.
|
[49] |
MENEGHETTI G, DE MARCHI A, CAMPAGNOLO A. Assessment of root failures in tube-to-flange steel welded joints under torsional loading according to the Peak Stress Method[J]. Theoretical and Applied Fracture Mechanics, 2016, 83: 19-30.
|
[50] |
CAMPAGNOLO A, MENEGHETTI G, BERTO F, et al. Crack initiation life in notched steel bars under torsional fatigue: synthesis based on the averaged strain energy density approach[J]. International Journal of Fatigue, 2017, 100: 563-574.
|
[51] |
GLINKA G. Effect of residual stresses on fatigue crack growth in steel weldments under constant and variable amplitude loads[M]//Fracture Mechanics. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 2009: 198.
|
[52] |
ELBER W. The significance of fatigue crack closure[M]//NEWMAN J C, ELBER W., Eds. Damage Tolerance in Aircraft Structures. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 2009: 230.
|
[53] |
KANG M K, ZHANG M X, ZHU M. In situ observation of bainite growth during isothermal holding[J]. Acta Materialia, 2006, 54(8): 2121-2129.
|
[54] |
MA Y E, STARON P, FISCHER T, et al. Size ef-fects on residual stress and fatigue crack growth in friction stir welded 2195-T8 aluminium - Part I: Experiments[J]. International Journal of Fatigue, 2011, 33(11): 1417-1425.
|
[55] |
LILJEDAHL C D M, ZANELLATO O, FITZPATR-ICK M E, et al. The effect of weld residual stresses and their re-distribution with crack growth during fatigue under constant amplitude loading[J]. International Journal of Fatigue, 2010, 32(4): 735-743.
|
[56] |
LILJEDAHL C D M, BROUARD J, ZANELLATO O, et al. Weld residual stress effects on fatigue crack growth behaviour of aluminium alloy 2024-T351[J]. International Journal of Fatigue, 2009, 31(6): 1081-1088.
|
[57] |
RONEVICH J A, SONG E J, FENG Z L, et al. Fatigue crack growth rates in high pressure hydrogen gas for multiple X100 pipeline welds accounting for crack location and residual stress[J]. Engineering Fracture Mechanics, 2020, 228: 106846.
|
[1] | ZHANG Erqing, WANG Xuchao, ZHAO Xin, HU Yanzhi, WANG Xu, MA Zhikui. Study on Parameter Sensitivity of Equivalent Elastic Modulus of CFRP Symmetric Laminates[J]. Development and Application of Materials, 2024, 39(3): 99-109. |
[2] | WANG Wei, YAN Dong, LIU Xiangqian, JIANG Peng, FU Wen, LI Yanmo. Research Progress of Nickel-based Superalloy Diffusion Bonding[J]. Development and Application of Materials, 2022, 37(5): 77-85. |
[3] | GAO Lingqing, LI Hui, ZHA Xiaoqin. Analysis of Embrittlement of Pure Nickel[J]. Development and Application of Materials, 2018, 33(6): 6-11. DOI: 10.19515/j.cnki.1003-1545.2018.06.002 |
[4] | WANG Shumei, GAO Bin. Determination of Main Elements in Chromium and Nickel Alloy by Internal Standard Normalization Method[J]. Development and Application of Materials, 2018, 33(4): 39-43. DOI: 10.19515/j.cnki.1003-1545.2018.04.007 |
[5] | GONG Xuhui, XUE Gang, LI Chong, GAO Zhenpeng. Experimental Study on Equivalency of Two Crack Arrest Test Methods[J]. Development and Application of Materials, 2018, 33(1): 7-11. DOI: 10.19515/j.cnki.1003-1545.2018.01.002 |
[6] | ZHANG Zhe-yu, WANG Zhi-qiang, XU Ning, ZHANG Pan, BAI Jian, WANG An-bin. Analysis of Rail Fastener Vibration Reduction Effect Based on Equivalent Lumped Mass Method[J]. Development and Application of Materials, 2014, 29(6): 16-21. DOI: 10.19515/j.cnki.1003-1545.2014.06.003 |
[7] | DU Mi-fang, NIE Fu-qiang, TONG Xiao-hong, GAO Xia. Evaluation of Uncertainty for Determination of Nickel Content in Low Alloy Steel by FAAS[J]. Development and Application of Materials, 2014, 29(1): 71-75. DOI: 10.19515/j.cnki.1003-1545.2014.01.017 |
[8] | XU Jian, XING Jian-dong, LI Jing-yin. Melting and Casting Characteristics of Nickel Aluminum Bronze[J]. Development and Application of Materials, 2004, 19(2): 36-39. DOI: 10.19515/j.cnki.1003-1545.2004.02.011 |
[9] | Guo Zeliang, Tang Wenxin, Zhang Hualong, Xu Jian, He Gang. Influences of Alloying Elements on the Properties of Nickel Aluminum Bronzes[J]. Development and Application of Materials, 2003, 18(2): 39-42. DOI: 10.19515/j.cnki.1003-1545.2003.02.013 |
[10] | Zhang Daoli, Gong Shuping, Zhou Dongxiang. The Effect of Complexing Agents on the Processing of Electroless Nickel Plating[J]. Development and Application of Materials, 2000, 15(1): 5-8. DOI: 10.19515/j.cnki.1003-1545.2000.01.002 |