DUAN Tigang, MA Li, WU Zhengjiang, XIN Yonglei, GAO Xianze, XU Likun. Morphology Effects of TiO2 Mediated Layer on Electrolytic Chlorine Evolution Performance of Ru-Ir Oxide Electrodes[J]. Development and Application of Materials, 2022, 37(3): 39-44.
Citation: DUAN Tigang, MA Li, WU Zhengjiang, XIN Yonglei, GAO Xianze, XU Likun. Morphology Effects of TiO2 Mediated Layer on Electrolytic Chlorine Evolution Performance of Ru-Ir Oxide Electrodes[J]. Development and Application of Materials, 2022, 37(3): 39-44.

Morphology Effects of TiO2 Mediated Layer on Electrolytic Chlorine Evolution Performance of Ru-Ir Oxide Electrodes

More Information
  • Received Date: August 11, 2021
  • Available Online: September 05, 2022
  • TiO2 mediated layers with various morphologies such as nanosheets and nanowires have been realized through the alkaline hydrothermal method to improve the electrochemical performance of Ru-Ir oxide electrodes. After introducing the TiO2 mediated layers, the electrode cracking morphology turns to the hierarchical structures with nanosheets and nanowires, and the cracks on the electrode surface disappear. Linear sweeping voltammetry analysis indicates that the chlorine evolution potential of electrode reduces from 1.171 V (vs. SCE) to 1.162 V (vs. SCE), and that the chlorine evolution polarizability decreases from 0.516 V to 0.454 V when the electric current densities are 2 mA·cm-2 and 20 mA·cm-2. The voltammetry charge calculation shows the amount of voltammetric charge for TiO2-mediated Ru-Ir oxide electrode increases to 18.3 mC·cm-2, which is 4.78 times as much as that of Ti/Ru-Ir electrode (3.83 mC·cm-2). Meanwhile, the charge transfer impedance decreases. Introducing the TiO2 mediated layers with various morphologies can improve the electrochemical activity of electrode and enhance the electrocatalytic chlorine evolution ability.
  • [1]
    TSWEN SHIEH D, HWANG B J.Morphology and electrochemical activity of Ru-Ti-Sn ternary-oxide electrodes in 1 M NaCl solution[J].Electrochimica Acta, 1993, 38(15):2239-2246.
    [2]
    LOCATELLI C, MINGUZZI A, VERTOVA A, et al.IrO2-SnO2 mixtures as electrocatalysts for the oxygen reduction reaction in alkaline media[J].Journal of Applied Electrochemistry, 2013, 43(2):171-179.
    [3]
    张胜健,辛永磊,许立坤,等.NaCl浓度对金属氧化物阳极电化学性能与失效影响研究[J].热加工工艺, 2015, 44(6):60-63.
    [4]
    WANG Y Q, GU B, XU W L.Electro-catalytic degradation of phenol on several metal-oxide anodes[J].Journal of Hazardous Materials, 2009, 162(2-3):1159-1164.
    [5]
    GAUDET J, TAVARES A C, TRASATTI S, et al.Physicochemical characterization of mixed RuO2-SnO2 solid solutions[J].Chemistry of Materials, 2005, 17(6):1570-1579.
    [6]
    CHEN S Y, ZHENG Y H, WANG S W, et al.Ti/RuO2-Sb2O5-SnO2 electrodes for chlorine evolution from seawater[J].Chemical Engineering Journal, 2011, 172(1):47-51.
    [7]
    MARSHALL A T, HAVERKAMP R G.Electro-catalytic activity of IrO2-RuO2 supported on Sb-doped SnO2 nanoparticles[J].Electrochimica Acta, 2010, 55(6):1978-1984.
    [8]
    MURAKAMI Y, KONDO T, SHIMODA Y, et al.Effects of rare earth chlorides on the preparation of porous ruthenium oxide electrodes[J].Journal of Alloys and Compounds, 1996, 239(2):111-113.
    [9]
    段体岗.电沉积法制备SnO2复合电极材料及其电催化性能研究[D].哈尔滨:哈尔滨工程大学, 2016.
    [10]
    LEE Y, SUNTIVICH J, MAY K J, et al.Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions[J].The Journal of Physical Chemistry Letters, 2012, 3(3):399-404.
    [11]
    POPE C G.X-ray diffraction and the Bragg equation[J].Journal of Chemical Education, 1997, 74(1):129.
    [12]
    PATTERSON A L.The scherrer formula for X-ray particle size determination[J].Physical Review, 1939, 56(10):978-982.
    [13]
    刘蔓.电催化法处理船舶压载水阳极的制备及性能研究[D].哈尔滨:哈尔滨工程大学, 2014.
    [14]
    XU L K, SCANTLEBURY J D.Electrochemical sur-face characterization of IrO2-Ta2O5 coated titanium electrodes in Na2SO4 solution[J].Journal of the Electrochemical Society, 2003, 150(6):B288.
    [15]
    YI Z, CHEN K N, WEI W, et al.Effect of IrO2 loading on RuO2-IrO2-TiO2 anodes:a study of microstructure and working life for the chlorine evolution reaction[J].Ceramics International, 2007, 33(6):1087-1091.
    [16]
    MOHAMMADI R, SØGAARD M, RAMOS T, et al.Electrochemical impedance modeling of a solid oxide fuel cell anode[J].Fuel Cells, 2014, 14(4):645-659.
    [17]
    PAJKOSSY T.Impedance of rough capacitive electrodes[J].Journal of Electroanalytical Chemistry, 1994, 364(1-2):111-125.
    [18]
    COSTA F R, FRANCO D V, DA SILVA L M.Ele-ctrochemical impedance spectroscopy study of the oxygen evolution reaction on a gas-evolving anode composed of lead dioxide microfibers[J].Electrochimica Acta, 2013, 90:332-343.
  • Related Articles

    [1]LI Mengqi, LI Xiaolong, GU Xiaodong, SHEN Chensi, ZHANG Lisha. Study on Preparation of Flexible Weaveable Ti Wire/TiO2 Nanoporous Film Photoanodes and Their Photocatalytic Performance[J]. Development and Application of Materials, 2023, 38(6): 67-73.
    [2]PEI Junshen, CHEN Yong, GU Kecheng, CHEN Chao, PENG Xiaohong, CHEN Yi. Research Progress of TiO2/Diatomite Composite Photocatalyst[J]. Development and Application of Materials, 2018, 33(2): 107-117. DOI: 10.19515/j.cnki.1003-1545.2018.02.018
    [3]HU Xianghong, LIU Xinwei, GU Kecheng, CHEN Yong. Preparation and Photocatalytic Activity of TiO2/Tourmaline[J]. Development and Application of Materials, 2016, 31(6): 56-60. DOI: 10.19515/j.cnki.1003-1545.2016.06.012
    [4]LIU Xin-wei, CHEN Yong, CHEN Chao, CHEN Chang-bing, ZHANG Wen-tong. Progress in Applied Research of TiO2 Photocatalytic Materials in Advanced Treatment of Drinking Water[J]. Development and Application of Materials, 2015, 30(3): 101-109. DOI: 10.19515/j.cnki.1003-1545.2015.03.020
    [5]CHEN Yong, GU Jin, CHEN Peng, CHEN Chao. Preparation and Property of Lanthanum Doped TiO2/Origanic Modified Bentonite Composite Photocatalyst[J]. Development and Application of Materials, 2013, 28(5): 44-49. DOI: 10.19515/j.cnki.1003-1545.2013.05.012
    [6]CHEN Yong, HU Xiang-hong, GU Jin, CHEN Peng, CHEN Chao. Preparation and Properties of TiO2/Modified Bentonite Composite Photocatalyst[J]. Development and Application of Materials, 2013, 28(3): 82-87. DOI: 10.19515/j.cnki.1003-1545.2013.03.019
    [7]GU Jin, ZHANG Jing-jing, CHEN Peng, CHEN Yong. Progress in Research on TiO2/Bentonite Composite Photocatalyst[J]. Development and Application of Materials, 2012, 27(3): 79-85. DOI: 10.19515/j.cnki.1003-1545.2012.03.019
    [8]BAI Yan, LI Yong-hong. Synthesis and Application of TiO2 Nanomaterials[J]. Development and Application of Materials, 2005, 20(2): 37-41. DOI: 10.19515/j.cnki.1003-1545.2005.02.010
    [9]Hu Anzheng, Tang Chaoqun. Glassfiber Supporting TiO2 for Photocatalytic Degradation of Organic Pollutants[J]. Development and Application of Materials, 2003, 18(4): 36-37,41. DOI: 10.19515/j.cnki.1003-1545.2003.04.011
    [10]Xiong Zhonghua, Wei Xiwen, Huang Feng. Photocatalytic Degradation of Methylene Blue by Compound Ni-P-TiO2 Electroless Plating[J]. Development and Application of Materials, 2002, 17(1): 11-13. DOI: 10.19515/j.cnki.1003-1545.2002.01.004

Catalog

    Article Metrics

    Article views (122) PDF downloads (19) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return