HE Yixuan, LIU Haoxiang, LI Mingyang, LIU Xudong, LI Jinshan. Effect of Ti Content on Microstructure and Mechanical Properties of the Co39.2Ni39.2Al21.6-xTixDual-phase High Entropy Alloys[J]. Development and Application of Materials, 2024, 39(5): 55-62.
Citation: HE Yixuan, LIU Haoxiang, LI Mingyang, LIU Xudong, LI Jinshan. Effect of Ti Content on Microstructure and Mechanical Properties of the Co39.2Ni39.2Al21.6-xTixDual-phase High Entropy Alloys[J]. Development and Application of Materials, 2024, 39(5): 55-62.

Effect of Ti Content on Microstructure and Mechanical Properties of the Co39.2Ni39.2Al21.6-xTixDual-phase High Entropy Alloys

More Information
  • Received Date: March 25, 2024
  • Available Online: November 19, 2024
  • Three dual phase high entropy alloys with a composition of Co39.2Ni39.2Al21.6-xTix(x=2, 4, and 6) are prepared in this work. All the three alloys display an FCC-B2 dual phase structure. Dispersed nanoscale L12 ordered precipitate phases are presented in FCC, and lath-like L10 martensite presented in B2 phase. With the increase of Ti content, the volume fractions of FCC and L12 phases and size of L12 phase increase, and the volume fraction of B2 phase decreases. The Co39.2Ni39.2Al15.6Ti6 alloy shows the most excellent combination of strength and ductility. The high strength and plasticity come from the stress induced martensitic transformation in the B2 phase during the deformation process, and the high work hardening rate provided by the L12 ordered precipitate phase in the FCC phase. This work provides a theoretical reference for designing the microstructure of the dual phase high entropy alloys through alloying to enhance their comprehensive mechanical properties.
  • [1]
    侯丽丽, 郭强, 要玉宏, 等. 退火态CoFeNiCrMnBx高熵合金微观组织和力学性能[J]. 材料开发与应用, 2023,38(2): 44-48.
    [2]
    李兆峰, 蒋鹏, 杨学东. TiCu0.5Al0.5Cr0.2Ni0.1高熵合金微观组织及性能研究[J]. 材料开发与应用, 2020, 35(3): 10-15.
    [3]
    KANG B, KONG T, RYU H J, et al. Superior mechanical properties and strengthening mechanisms of lightweight AlxCrNbVMo refractory high-entropy alloys(x=0, 0.5, 1.0) fabricated by the powder metallurgy process[J]. Journal of Materials Science& Technology, 2021, 69: 32-41.
    [4]
    CUI D C, ZHANG Y Y, LIU L X, et al. Oxygen-assisted spinodal structure achieves 1.5 GPa yield strength in a ductile refractory high-entropy alloy[J]. Journal of Materials Science & Technology, 2023, 157: 11-20.
    [5]
    LU Y P, GAO X Z, JIANG L, et al. Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range[J]. Acta Materialia,2017, 124: 143-150.
    [6]
    LU Y P, DONG Y, JIANG H, et al. Promising properties and future trend of eutectic high entropy alloys[J]. Scripta Materialia, 2020, 187: 202-209.
    [7]
    LU Y P, DONG Y, GUO S, et al. A promising new class of high-temperature alloys: eutectic high-entropy alloys[J]. Scientific Reports, 2014, 4: 6200.
    [8]
    GAO X Z, LU Y P, ZHANG B, et al. Microstruc-tural origins of high strength and high ductility in an AlCoCrFeNi2.1 eutectic high-entropy alloy[J]. Acta Materialia, 2017, 141: 59-66.
    [9]
    WU Q F, HE F, LI J J, et al. Phase-selective recrystallization makes eutectic high-entropy alloys ultra-ductile[J]. Nature Communications, 2022, 13: 4697.
    [10]
    SHI P, LI R, LI Y, et al. Hierarchical crack buffering triples ductility in eutectic herringbone high-entropy alloys[J]. Science, 2021, 373(6557): 912-918.
    [11]
    WANG M Z, WEN Z Q, LIU J X, et al. Synergistic effect of Zr and Hf alloying on cross fluvial microstructure of CoCrFeNi eutectic high-entropy alloys[J]. Materials Letters, 2023, 345: 134416.
    [12]
    JIA Y H, WANG Z J, WU Q F, et al. Boron mic-roalloying for high-temperature eutectic high-entropy alloys[J].Acta Materialia, 2024, 262: 119427.
    [13]
    LIU H X, BIAN Z C, WU Y H, et al. Achieving excellent strength-ductility combination in Co60.8-xNi39.2Alx eutectic medium-entropy alloys[J]. Materials Scienceand Engineering:A, 2023, 886: 145720.
    [14]
    LE P D D. Small molecule X-ray crystallography, theory and workflow[M]//Encyclopedia of Spectroscopy and Spectrometry. Amsterdam: Elsevier, 2010: 2559-2576.
    [15]
    EFSTATHIOU C, SEHITOGLU H, WAGONER J A J, et al. Large reduction in critical stress in Co-Ni-Al upon repeated transformation[J]. Scripta Materialia, 2004, 51(10): 979-985.
    [16]
    MAZIARZ W. Structure changes of Co-Ni-Al ferromagnetic shape memory alloys after vacuum annealing and hot rolling[J]. Journal of Alloys and Compounds, 2008, 448(1-2): 223-226.
    [17]
    ZHANG L, CHEN S, FU H M, et al. Tailoring modulus and hardness of in situ formed β-Ti in bulk metallic glass composites by precipitation of isothermal ω-Ti[J]. Materials&Design, 2017, 133: 82-90.
    [18]
    SUN G A, WANG X L, WANG Y D, et al. In-situ high-energy synchrotron X-ray diffraction study of micromechanical behavior of multiple phases in Ni47Ti44Nb9 shape memory alloy[J]. Materials Science and Engineering:A, 2013, 560: 458-465.
  • Related Articles

    [1]WANG Yiling, SUN Chongfeng, GU Zhen, LI Xiaojuan, LI Chunyu, XI Shengqi, BAI Yaping, HE Zibo, GUO Qiaoqin. Effect of C Content on Microstructure and Properties of (FeCoCrNi)88-xMo8WNb3CxHigh Entropy Alloys by Additive Manufacturing[J]. Development and Application of Materials, 2024, 39(1): 14-22,46.
    [2]HOU Lili, GUO Qiang, YAO Yuhong, LIU Jiangnan. Microstructure and Mechanical Properties of Annealed CoFeNiCrMnBx High Entropy Alloy[J]. Development and Application of Materials, 2023, 38(2): 44-48.
    [3]LI Zhaofeng, JIANG Peng, YANG Xuedong. Microstructure and Properties of TiCu0.5Al0.5Cr0.2Ni0.1 High-Entropy Alloy[J]. Development and Application of Materials, 2020, 35(3): 10-15.
    [4]WANG Jian, ZHOU Ting-jun, JIN Wei, YAN Ying. Effect of Heat Treatment on Transformation Behavior and Tensile Properties of Ti-50.8Ni Alloy[J]. Development and Application of Materials, 2009, 24(1): 30-31,38. DOI: 10.19515/j.cnki.1003-1545.2009.01.009
    [5]WANG Xiao-hong, ZHANG Bo-ming, DU Shan-yi, YU Dong. Research on Performances and Parameter of NiTi Shape Memory Alloys with Different Initial Microstructure[J]. Development and Application of Materials, 2009, 24(1): 12-15. DOI: 10.19515/j.cnki.1003-1545.2009.01.004
    [6]DENG Chao-yu, GAO Yan, LI Hao, CENG Mei-qin, YUAN Bin, ZHU Min. Effect of Material State on the Phase Transformation of NiTi Shape Memory Alloy[J]. Development and Application of Materials, 2008, 23(2): 8-13. DOI: 10.19515/j.cnki.1003-1545.2008.02.003
    [7]XIE Qing-feng, LI Hao, GAO Yan. Influence of Heat Treatment on Phase Transformation of NiTi Shape Memory Alloys[J]. Development and Application of Materials, 2007, 22(2): 5-7. DOI: 10.19515/j.cnki.1003-1545.2007.02.002
    [8]ZHAO Rong-da, WANG Xiao-li, ZHANG Wei-qiang, ZHU Hong-fei. Influence of Cu on Properties of Low Carbon Antibacterical Martensite Stainless Steel[J]. Development and Application of Materials, 2006, 21(5): 14-16. DOI: 10.19515/j.cnki.1003-1545.2006.05.005
    [9]LUO Feng-hua, CHEN Jia-yan, LIU Lang-fei, Katsunari Oikawa, Kiyohito Ishida. Martensitic Transformation and Damping Capacity of Co41Ni33Al26 Alloy Ribbons Fabricated by Cold Rolling Method[J]. Development and Application of Materials, 2006, 21(2): 9-13,23. DOI: 10.19515/j.cnki.1003-1545.2006.02.003
    [10]Wang Dongfeng, Kang Buxi, Liu Ping, Tian Baohong, Huang Jinliang. Phase Transformation Kinetics of Solutioned Cu-Ni-Si Alloy[J]. Development and Application of Materials, 2003, 18(5): 1-3,13. DOI: 10.19515/j.cnki.1003-1545.2003.05.001
  • Cited by

    Periodical cited type(2)

    1. 张明鑫,曾庆业. 环保型钕铁硼电镀剂的开发过程及应用探究. 天津化工. 2024(01): 109-112 .
    2. 张超,黄光伟,王亚娜,陆通,石银冬,郑立允. 钕铁硼粉体的表面改性技术及应用研究进展. 表面技术. 2024(24): 40-53 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (74) PDF downloads (25) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return