Citation: | DING Penglong, CHENG Yingjin, HE Liang. Numerical Simulation and Control of Block Welding Deformation of Large Steel Deck[J]. Development and Application of Materials, 2023, 38(1): 9-16. |
[1] |
吴润辉,王永兴,张波,等.船舶焊接工艺[M].哈尔滨:哈尔滨工程大学出版社, 1996:298-299.
|
[2] |
MURAKAWA H, DENG D A, MA N S, et al. Applications of inherent strain and interface element to simulation of welding deformation in thin plate structures[J]. Computational Materials Science, 2012, 51(1):43-52.
|
[3] |
王阳.大型复杂船体结构焊接变形分析方法的研究及应用[D].上海:上海交通大学,2015.
|
[4] |
周宏,罗宇,蒋志勇,等.基于ANSYS的船舶复杂结构焊接变形预测研究[J].中国造船, 2010, 51(2):57-67.
|
[5] |
史雄华,牛业兴,向生,等.船体结构焊接变形的预测与控制研究进展[J].造船技术, 2019(1):1-6.
|
[6] |
任帅.船体典型构件焊接工艺仿真及分段装焊变形预测研究[D].镇江:江苏科技大学, 2017.
|
[7] |
MASUBUCHI K. Analysis of welded structures:residual stresses, distortion, and their consequences[M]. Oxford:Pergamon Press, 1980.
|
[8] |
李磊,任帅,王鹏宇,等.大型船体舷侧分段装焊顺序仿真及其变形预测研究[J].热加工工艺, 2018, 47(23):206-211.
|
[9] |
李婧.大型船体焊接变形仿真技术研究及其应用:50000T多用途船货舱双层底结构焊接变形预测[D].上海:上海交通大学, 2011.
|
[10] |
黄振华.船体型材对接焊的焊接顺序优化研究[D].大连:大连理工大学, 2009.
|
[11] |
沈济超.大型船体结构焊接变形热弹塑性有限元数值模拟方法研究[D].上海:上海交通大学, 2015.
|
[12] |
曾阳.船体板架结构焊接变形预测控制及影响因素研究[D].哈尔滨:哈尔滨工程大学, 2015.
|
[13] |
LI J, GUAN Q, GUO D, et al. Effects of distance between arc and heat sink on stress and distortion in DC-LSND welding technology[J].中国焊接, 2007(3):16.
|
[14] |
MICHALERIS P, DANTZIG J, TORTORELLI D. M-inimization of welding residual stress and distortion in large structures:finite element analysis, analysis sensitivity analysis and nonlinear programming are implemented to investigate thermal tensioning[J]. Welding Journal, 1999(11):78.
|
[15] |
DEO M V, MICHALERIS P. Mitigation of welding induced buckling distortion using transient thermal tensioning[J].Science and Technology of Welding and Joining, 20038(1):49-54.
|
[16] |
钟华,佟新伟,程文韬,等.大型纵向桁材式基座焊接变形仿真与控制[J].材料开发与应用, 2021, 36(1):71-76.
|
[1] | XIE Shun, ZHU Baoqi, ZOU Jianglin. Comparison of Spectrometric Measurements of Plasma Temperature in Laser Penetration Welding[J]. Development and Application of Materials, 2023, 38(5): 70-74,85. |
[2] | LUO Xilin, WEI Jianhui, LI Piao, LIU Zhikang, LIU Jiayi. Study on Penetration Resistance of Carbon Fiber Braided Composite Laminates[J]. Development and Application of Materials, 2023, 38(4): 61-68. |
[3] | XUE Gang. Analysis of the Size Effects on the Elastic Stress Concentration Factors at the Top of the Penetrating Notch in the Center of the Double-tension-plate[J]. Development and Application of Materials, 2023, 38(2): 1-9. |
[4] | LEI Xiaowei, ZHANG Yi, YU Wei, GAO Rui, LU Hai. Development of Advanced GTAW Technology[J]. Development and Application of Materials, 2018, 33(6): 130-134. DOI: 10.19515/j.cnki.1003-1545.2018.06.022 |
[5] | YUAN Yu-lan, WANG Xi-bao, ZHU Dong-mei, LIU Dan. Effect of Activating Flux on Appearance of Welds and Spatter in CO2 Arc Welding[J]. Development and Application of Materials, 2006, 21(1): 24-27,30. DOI: 10.19515/j.cnki.1003-1545.2006.01.007 |
[6] | YAO Hong-wei, ZHANG Jing-hai. Procedure for Activating TIG Welding of Monel Alloy[J]. Development and Application of Materials, 2005, 20(4): 34-37. DOI: 10.19515/j.cnki.1003-1545.2005.04.011 |
[7] | PAN Yang, WEI Ya-bing, CHEN Hong-ling, SHI Shu-zhe. Synthetic Method and Surface-active Property of C8F17SO2N(C2H5)C2H4(OC2H4)nOH[J]. Development and Application of Materials, 2004, 19(3): 16-18,24. DOI: 10.19515/j.cnki.1003-1545.2004.03.005 |
[8] | Hao Sue, Wei Yongde. Preparation and Electric Characteristics of Nd-Penetrating PbTiO3 Ceramics[J]. Development and Application of Materials, 2003, 18(3): 1-3. DOI: 10.19515/j.cnki.1003-1545.2003.03.001 |
[9] | ZHANG Ruihua, FAN Ding. Development of an Activation Flux for the GTAW of Low Carbon Steel[J]. Development and Application of Materials, 2001, 16(5): 1-3,11. DOI: 10.19515/j.cnki.1003-1545.2001.05.001 |
[10] | Zhang Jinghai, Lu Xiaosheng, Yu Wei. Research on GTAW Flux Used for 304 Stainless Steel Welding[J]. Development and Application of Materials, 2000, 15(6): 1-4. DOI: 10.19515/j.cnki.1003-1545.2000.06.001 |