WANG Qiang, XU Yan, LIU Ying, JIANG Fei-wei. Analysis of Performance of Detonation Spraying Al2O3 Coat[J]. Development and Application of Materials, 2008, 23(2): 42-44. DOI: 10.19515/j.cnki.1003-1545.2008.02.012
Citation: WANG Qiang, XU Yan, LIU Ying, JIANG Fei-wei. Analysis of Performance of Detonation Spraying Al2O3 Coat[J]. Development and Application of Materials, 2008, 23(2): 42-44. DOI: 10.19515/j.cnki.1003-1545.2008.02.012

Analysis of Performance of Detonation Spraying Al2O3 Coat

More Information
  • Received Date: September 26, 2007
  • Available Online: March 29, 2024
  • Al2O3 coat is prepared via detonation spraying with NiAl powder as ground floor and 45 steel as base.XRD spectrum of the coat indicates that structure are α-Al2O3 and γ-Al2O3 mainly,indicating the structure changed.The porosity of the coat is 0.019 n/ mm2 by JB/T 7509-94 iron reagent,indicating the coat has denser microstructure and fewer porosity,this suggests that the detonation spraying coat can improve the wear resistance of base steel and is suitable for wear resistance coat.
  • Related Articles

    [1]DOU Lei, ZHAI Jianming, WANG Jing, SUN Yonghui, SHANG Xuexin. Study on Strength and Toughness Testing of 45 Steel Based on Continuous Ball Indentation Method[J]. Development and Application of Materials, 2022, 37(6): 39-46.
    [2]WANG Desheng, WANG Zhenghong, WANG Pengyun, ZHANG Fanxing, CHU Shaoqi, LI Li, XIE Shufeng, FENG Yan. Microstructures and Fatigue Crack Growth Rates of Domestic and Imported 5083-H116 Aliuminum Alloy[J]. Development and Application of Materials, 2021, 36(5): 20-29.
    [3]ZHENG Guohua. Study on Microstructure and Fracture Behavior of X100 Pipeline Steel Welded Joints[J]. Development and Application of Materials, 2019, 34(4): 65-69. DOI: 10.19515/j.cnki.1003-1545.2019.04.012
    [4]XUE Gang, GONG Xuhui, SU Yang, LIU Dongsheng, MA Jianpo, GUO Tong. The Statistical Natures of Relativity between Fracture Toughness KC and Impact Toughness for Q500 Steel[J]. Development and Application of Materials, 2016, 31(4): 1-6. DOI: 10.19515/j.cnki.1003-1545.2016.04.001
    [5]SU Yang, YI Lun-xiong, MA Jian-po, GONG Xu-hui. Fracture Toughness Expression of Q500 Welding Joint[J]. Development and Application of Materials, 2015, 30(3): 1-5. DOI: 10.19515/j.cnki.1003-1545.2015.03.001
    [6]SUN Peng-peng, LI Shi-kai, SUN Er-ju, WAN Zi-yong, GUO Ning, LEI Xiao-wei. Effect of Forging Times on Fracture Toughness and High Cycle Fatigue of TB6 Alloy[J]. Development and Application of Materials, 2013, 28(5): 18-21. DOI: 10.19515/j.cnki.1003-1545.2013.05.005
    [7]ZHANG Ya-jun, LÜ Yi-fan. Study on Fracture Toughness Test of TC4ELI Alloy[J]. Development and Application of Materials, 2012, 27(2): 14-17. DOI: 10.19515/j.cnki.1003-1545.2012.02.004
    [8]CHEN Li-zhi, ZHANG Ya-jun. Research on Low Temperature CTOD Fracture Toughness and da/dN Properties of S355N and S355N-Z25 Structural Steel Plate[J]. Development and Application of Materials, 2011, 26(5): 42-44,48. DOI: 10.19515/j.cnki.1003-1545.2011.05.010
    [9]ZHANG Ya-jun, WANG Jia-min, ZHANG Xin-yao, LIANG Jian, CHA Xiao-qin. Test Study of Fracture Toughness on Super-high Strength Structural Steel AF1410[J]. Development and Application of Materials, 2008, 23(5): 12-14,29. DOI: 10.19515/j.cnki.1003-1545.2008.05.003
    [10]Yuan Jingsong. Approximate Calculation of Crack Propagation Rate of Metal Corrosion Fatigue[J]. Development and Application of Materials, 2000, 15(2): 26-29. DOI: 10.19515/j.cnki.1003-1545.2000.02.007

Catalog

    Article Metrics

    Article views (32) PDF downloads (1) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return