LI Shi-kai. Effects of Bi-lamellar Microstructure on the Properties of Titanium Alloy[J]. Development and Application of Materials, 2011, 26(6): 17-21. DOI: 10.19515/j.cnki.1003-1545.2011.06.005
Citation: LI Shi-kai. Effects of Bi-lamellar Microstructure on the Properties of Titanium Alloy[J]. Development and Application of Materials, 2011, 26(6): 17-21. DOI: 10.19515/j.cnki.1003-1545.2011.06.005

Effects of Bi-lamellar Microstructure on the Properties of Titanium Alloy

More Information
  • Received Date: August 25, 2011
  • Available Online: March 28, 2024
  • A new type of microstructure,named bi-lamellar microstructure of titanium alloy comes out of precipitated small secondary α needles in the β matrix through modification heat treatment.A comparison of microstructure and property of titanium alloy between equaixed,bi-model and lamellar microstructure is made.The results manifest that bi-lamellar microstructure improves the fracture toughness and fatigue crack propagation behavior of TA15 alloys remarkably,increases the length of fatigue crack propagation and brings about large secondary cracks.
  • Related Articles

    [1]DOU Lei, ZHAI Jianming, WANG Jing, SUN Yonghui, SHANG Xuexin. Study on Strength and Toughness Testing of 45 Steel Based on Continuous Ball Indentation Method[J]. Development and Application of Materials, 2022, 37(6): 39-46.
    [2]WANG Desheng, WANG Zhenghong, WANG Pengyun, ZHANG Fanxing, CHU Shaoqi, LI Li, XIE Shufeng, FENG Yan. Microstructures and Fatigue Crack Growth Rates of Domestic and Imported 5083-H116 Aliuminum Alloy[J]. Development and Application of Materials, 2021, 36(5): 20-29.
    [3]ZHENG Guohua. Study on Microstructure and Fracture Behavior of X100 Pipeline Steel Welded Joints[J]. Development and Application of Materials, 2019, 34(4): 65-69. DOI: 10.19515/j.cnki.1003-1545.2019.04.012
    [4]XUE Gang, GONG Xuhui, SU Yang, LIU Dongsheng, MA Jianpo, GUO Tong. The Statistical Natures of Relativity between Fracture Toughness KC and Impact Toughness for Q500 Steel[J]. Development and Application of Materials, 2016, 31(4): 1-6. DOI: 10.19515/j.cnki.1003-1545.2016.04.001
    [5]SU Yang, YI Lun-xiong, MA Jian-po, GONG Xu-hui. Fracture Toughness Expression of Q500 Welding Joint[J]. Development and Application of Materials, 2015, 30(3): 1-5. DOI: 10.19515/j.cnki.1003-1545.2015.03.001
    [6]SUN Peng-peng, LI Shi-kai, SUN Er-ju, WAN Zi-yong, GUO Ning, LEI Xiao-wei. Effect of Forging Times on Fracture Toughness and High Cycle Fatigue of TB6 Alloy[J]. Development and Application of Materials, 2013, 28(5): 18-21. DOI: 10.19515/j.cnki.1003-1545.2013.05.005
    [7]ZHANG Ya-jun, LÜ Yi-fan. Study on Fracture Toughness Test of TC4ELI Alloy[J]. Development and Application of Materials, 2012, 27(2): 14-17. DOI: 10.19515/j.cnki.1003-1545.2012.02.004
    [8]CHEN Li-zhi, ZHANG Ya-jun. Research on Low Temperature CTOD Fracture Toughness and da/dN Properties of S355N and S355N-Z25 Structural Steel Plate[J]. Development and Application of Materials, 2011, 26(5): 42-44,48. DOI: 10.19515/j.cnki.1003-1545.2011.05.010
    [9]ZHANG Ya-jun, WANG Jia-min, ZHANG Xin-yao, LIANG Jian, CHA Xiao-qin. Test Study of Fracture Toughness on Super-high Strength Structural Steel AF1410[J]. Development and Application of Materials, 2008, 23(5): 12-14,29. DOI: 10.19515/j.cnki.1003-1545.2008.05.003
    [10]Yuan Jingsong. Approximate Calculation of Crack Propagation Rate of Metal Corrosion Fatigue[J]. Development and Application of Materials, 2000, 15(2): 26-29. DOI: 10.19515/j.cnki.1003-1545.2000.02.007

Catalog

    Article Metrics

    Article views (31) PDF downloads (5) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return