LI Shi-kai. Effects of Bi-lamellar Microstructure on the Properties of Titanium Alloy[J]. Development and Application of Materials, 2011, 26(6): 17-21. DOI: 10.19515/j.cnki.1003-1545.2011.06.005
Citation: LI Shi-kai. Effects of Bi-lamellar Microstructure on the Properties of Titanium Alloy[J]. Development and Application of Materials, 2011, 26(6): 17-21. DOI: 10.19515/j.cnki.1003-1545.2011.06.005

Effects of Bi-lamellar Microstructure on the Properties of Titanium Alloy

More Information
  • Received Date: August 25, 2011
  • Available Online: March 28, 2024
  • A new type of microstructure,named bi-lamellar microstructure of titanium alloy comes out of precipitated small secondary α needles in the β matrix through modification heat treatment.A comparison of microstructure and property of titanium alloy between equaixed,bi-model and lamellar microstructure is made.The results manifest that bi-lamellar microstructure improves the fracture toughness and fatigue crack propagation behavior of TA15 alloys remarkably,increases the length of fatigue crack propagation and brings about large secondary cracks.
  • Related Articles

    [1]HE Liang, NIU Jicheng, ZHANG Yuxiang. Analysis on Impact Toughness Difference between Butt Weld Metal and Deposited Metal[J]. Development and Application of Materials, 2020, 35(4): 86-90.
    [2]XUE Gang, GONG Xuhui, SU Yang, LIU Dongsheng, MA Jianpo, GUO Tong. The Statistical Natures of Relativity between Fracture Toughness KC and Impact Toughness for Q500 Steel[J]. Development and Application of Materials, 2016, 31(4): 1-6. DOI: 10.19515/j.cnki.1003-1545.2016.04.001
    [3]SU Yang, YI Lun-xiong, MA Jian-po, GONG Xu-hui. Fracture Toughness Expression of Q500 Welding Joint[J]. Development and Application of Materials, 2015, 30(3): 1-5. DOI: 10.19515/j.cnki.1003-1545.2015.03.001
    [4]SUN Peng-peng, LI Shi-kai, SUN Er-ju, WAN Zi-yong, GUO Ning, LEI Xiao-wei. Effect of Forging Times on Fracture Toughness and High Cycle Fatigue of TB6 Alloy[J]. Development and Application of Materials, 2013, 28(5): 18-21. DOI: 10.19515/j.cnki.1003-1545.2013.05.005
    [5]ZHANG Ya-jun, LÜ Yi-fan. Study on Fracture Toughness Test of TC4ELI Alloy[J]. Development and Application of Materials, 2012, 27(2): 14-17. DOI: 10.19515/j.cnki.1003-1545.2012.02.004
    [6]CHEN Li-zhi, ZHANG Ya-jun. Research on Low Temperature CTOD Fracture Toughness and da/dN Properties of S355N and S355N-Z25 Structural Steel Plate[J]. Development and Application of Materials, 2011, 26(5): 42-44,48. DOI: 10.19515/j.cnki.1003-1545.2011.05.010
    [7]LIU Ning-sheng, LI Mei-zhen, JIANG Cheng-gang, LONG Chang-mao, HUANG Bin. Affecting Factors Analysis of Low Temperature Impact Toughness of Welding Electrode E5018[J]. Development and Application of Materials, 2008, 23(4): 24-26. DOI: 10.19515/j.cnki.1003-1545.2008.04.007
    [8]HUO Guang-rui, ZHANG Jun-xu, FU Xue-man. Effect of Trace Boron on the Impact Toughness of 440MPa Deposited Metal[J]. Development and Application of Materials, 2006, 21(2): 18-23. DOI: 10.19515/j.cnki.1003-1545.2006.02.005
    [9]LU Xiao-sheng. The Study of Impact Toughness of 10MnNiCrMoV Steel[J]. Development and Application of Materials, 2005, 20(3): 11-13. DOI: 10.19515/j.cnki.1003-1545.2005.03.004
    [10]LI Zhen-rong, CHEN Bin, ZHANG Jun-xu, WANG Ming-lin. Effect of Carbon on the Impact Toughness ofUltralow Carbon Steel Deposited Metal[J]. Development and Application of Materials, 2005, 20(1): 23-26,46. DOI: 10.19515/j.cnki.1003-1545.2005.01.007
  • Cited by

    Periodical cited type(3)

    1. 屈少鹏,赵行娅,轩星雨. 极地钢铁材料的腐蚀与防护面临新挑战. 材料科学与工艺. 2023(06): 19-28 .
    2. 高珍鹏,宫旭辉,牛佳佳,王东胜,朱官朋. 390 MPa级复合钢板极地低温环境适应性分析. 表面技术. 2022(06): 67-75 .
    3. 纪久张,张朋彦,董陈,张迪. 焊接热输入对EH36船板钢显微组织和力学性能的影响. 热处理. 2022(05): 14-18+24 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (33) PDF downloads (5) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return