ZHENG Guohua, ZUO Tong, ZHANG Xinyao, ZHANG Lijuan, ZHAO Yang. Study on Fatigue Property of TC11 for Compressor Blade[J]. Development and Application of Materials, 2016, 31(3): 22-27. DOI: 10.19515/j.cnki.1003-1545.2016.03.005
Citation: ZHENG Guohua, ZUO Tong, ZHANG Xinyao, ZHANG Lijuan, ZHAO Yang. Study on Fatigue Property of TC11 for Compressor Blade[J]. Development and Application of Materials, 2016, 31(3): 22-27. DOI: 10.19515/j.cnki.1003-1545.2016.03.005

Study on Fatigue Property of TC11 for Compressor Blade

More Information
  • Received Date: January 24, 2016
  • Available Online: March 19, 2024
  • The influence of temperature on fatigue strength of TC11 titanium alloy was investigated by means of rotary bending fatigue test at different temperatures. It has been found that the fatigue strength of TC11 titanium alloy decreases with temperatures rising within 150—250 ℃, which was attributed to the decrease of the amounts of equiaxed structure and yield and extension strength. Besides, oxidative damage at elevated temperature was another important cause. The results also showed that only surface fatigue crack initiation was found in TC11 titanium alloy at an elevated temperature, and the fatigue crack of subsurface crack initiation was not found.
  • Related Articles

    [1]YUAN Tianjing, ZHANG Xinwei, JING Jiarui, WU Xiaowen, FAN Yalong, LAI Minjie, LI Jinshan. Research Progress on Fatigue Behavior of Ultra-High Strength Titanium Alloys[J]. Development and Application of Materials, 2024, 39(4): 110-122.
    [2]GAO Yuhao, WANG Jia, WU Zepeng, CHEN Pei, ZHAI Jianfei. Study on Crack Curvature Correction Method in Fatigue Crack Growth Rate Test[J]. Development and Application of Materials, 2023, 38(2): 10-15.
    [3]ZHANG Yajun, ZHANG Xinyao, ZHANG Yunhao. Analysis on Application of Different Models for Fatigue Crack Propagation Rate of Metallic Materials[J]. Development and Application of Materials, 2021, 36(2): 88-92.
    [4]FEI Qiqi, WANG Haoxuan, XIA Min, GUO Lin, ZHANG Tianhui. Effect of Loading Method on Fatigue Crack Propagation in ADB610 Steel[J]. Development and Application of Materials, 2019, 34(3): 108-112. DOI: 10.19515/j.cnki.1003-1545.2019.03.019
    [5]WANG Yuan, FEI Qiqi, ZHAO Cong, WANG Qiang, ZHANG Tianhui. Effect of Load on Fatigue Crack Growth of ADB610 Steel[J]. Development and Application of Materials, 2018, 33(1): 20-24. DOI: 10.19515/j.cnki.1003-1545.2018.01.005
    [6]LI Chong, GONG Xuhui, WANG Renfu. Study on Fatigue Surface Crack Propagation of 10Ni5CrMoV Steel under Biaxial Bending Stress[J]. Development and Application of Materials, 2017, 32(3): 5-10. DOI: 10.19515/j.cnki.1003-1545.2017.03.002
    [7]WU Chunxue, ZHANG Yongfeng, REN Fangjie. Study on Fatigue Crack Growth Rate of High Pressure Vessel Steel[J]. Development and Application of Materials, 2016, 31(1): 27-29. DOI: 10.19515/j.cnki.1003-1545.2016.01.006
    [8]CONG Jian-chen, SUN Jun, NI Pei-xiang, WANG Lei, CI Wei-hong. Crack Study and Failure Criterion in Bending Fatigue Test of Crankshaft[J]. Development and Application of Materials, 2014, 29(6): 104-109. DOI: 10.19515/j.cnki.1003-1545.2014.06.021
    [9]CHANG Lei, DENG Chun-feng, REN Fang-jie, SHAO Fei, WU Chun-xue, MEI Peng-cheng. Numerical Simulation of Fatigue Crack Growth on the Pressure Vessel’s Surface[J]. Development and Application of Materials, 2013, 28(5): 95-100. DOI: 10.19515/j.cnki.1003-1545.2013.05.022
    [10]Yuan Jingsong. Approximate Calculation of Crack Propagation Rate of Metal Corrosion Fatigue[J]. Development and Application of Materials, 2000, 15(2): 26-29. DOI: 10.19515/j.cnki.1003-1545.2000.02.007

Catalog

    Article Metrics

    Article views (26) PDF downloads (1) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return