WANG Qi, TANG Lirong, LI Yanhong, WANG Jingjing, XIE Zhipeng. Research on Underwater Antifouling Coating for Marine Engineering[J]. Development and Application of Materials, 2017, 32(1): 30-35. DOI: 10.19515/j.cnki.1003-1545.2017.01.006
Citation: WANG Qi, TANG Lirong, LI Yanhong, WANG Jingjing, XIE Zhipeng. Research on Underwater Antifouling Coating for Marine Engineering[J]. Development and Application of Materials, 2017, 32(1): 30-35. DOI: 10.19515/j.cnki.1003-1545.2017.01.006

Research on Underwater Antifouling Coating for Marine Engineering

More Information
  • Received Date: August 21, 2016
  • Available Online: March 17, 2024
  • Azide groups were grafted onto the epoxy resin to improve the wet adhesion strength of the epoxy resin, then the modified epoxy resin was compounded with the epoxy resin 618 in various proportions to prepare underwater antifouling coatings. The adhesion strength, copper ion leakage ratio and marine antifouling performance of the underwater antifouling coatings were investigated.Results showed that the underwater adhesion strength increased first and then decreased with the increase of azide epoxy resin. The copper ion leakage and the submergence showed that the underwater antifouling coatings functioned well in anti-fouling.
  • Related Articles

    [1]GONG Hui, XU Chuqi, YAO Jinghuas. Correlation Analysis for Copper Release Rate Test Results of Antifouling Paint in Indoor Simulated and Real Seawater Environment[J]. Development and Application of Materials, 2022, 37(6): 114-118.
    [2]CHEN Leilei, CHEN Shanshan, NIU Yongfeng, LIN Jiancong, YANG Mingliang, LIU Yilong. Research Progress of Marine Antifouling Biocides[J]. Development and Application of Materials, 2021, 36(5): 94-102.
    [3]FENG Xiaofeng, XIA Xiufeng, HE Chunju. Preparation of Antifouling Coatings of Zwitter-ion Nano-silica Particles Inspired by Mussel[J]. Development and Application of Materials, 2018, 33(2): 33-37. DOI: 10.19515/j.cnki.1003-1545.2018.02.005
    [4]LIU Yin-song, LIU Ming-guang, LI Liang, YAN Xin. Antifouling Coatings Based on Acrylate Copolymers Containing Quaternary Ammonium Salt[J]. Development and Application of Materials, 2015, 30(3): 17-20. DOI: 10.19515/j.cnki.1003-1545.2015.03.004
    [5]YE Xian-huai, LI Liang, ZHAO Hua, WANG Hai-rong, ZHANG Ying. Direct Electrolysis-atomic Absorption Spectrometric Method for Determination of Total Copper in Antifouling Paints[J]. Development and Application of Materials, 2015, 30(2): 79-81. DOI: 10.19515/j.cnki.1003-1545.2015.02.017
    [6]ZHANG Xiao, CHEN Xi-guang, DUAN Dong-xia, LIN Cun-guo. Antifouling Activities of Metabolic Product Produced by Marine Bacteria[J]. Development and Application of Materials, 2013, 28(4): 26-31. DOI: 10.19515/j.cnki.1003-1545.2013.04.007
    [7]ZHANG Jin-wei, LIN Cun-guo, XU Feng-ling, WANG Li, DUAN Dong-xia, ZHENG Ji-yong, ZHOU Juan. Protein Resistance Materials and Its Application Prospect in Marine Antifouling Materials[J]. Development and Application of Materials, 2013, 28(3): 123-126. DOI: 10.19515/j.cnki.1003-1545.2013.03.027
    [8]XU Feng-ling, LIN Cun-guo, YU Hong-xian, ZHENG Ji-yong. The Study of Controlled Release of Marine Antifoulant[J]. Development and Application of Materials, 2013, 28(3): 119-122. DOI: 10.19515/j.cnki.1003-1545.2013.03.026
    [9]LUO Zheng-hong, HONG Shun-li, HE Teng-yun. Formulation Design of Low Surface Energy Marine Antifouling Coatings[J]. Development and Application of Materials, 2006, 21(6): 33-35. DOI: 10.19515/j.cnki.1003-1545.2006.06.010
    [10]Zhao Xiaoyan. The Research Progress of the Marine Natural Product Antifoulants[J]. Development and Application of Materials, 2001, 16(4): 34-37. DOI: 10.19515/j.cnki.1003-1545.2001.04.010

Catalog

    Article Metrics

    Article views (51) PDF downloads (5) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return