CHEN Jiayi, CAO Yaying, HU Zhongbo, CHEN Zhi. Study on ZnO-based Ammonia Gas Sensor under the Action of Reference Material[J]. Development and Application of Materials, 2022, 37(5): 103-108.
Citation: CHEN Jiayi, CAO Yaying, HU Zhongbo, CHEN Zhi. Study on ZnO-based Ammonia Gas Sensor under the Action of Reference Material[J]. Development and Application of Materials, 2022, 37(5): 103-108.

Study on ZnO-based Ammonia Gas Sensor under the Action of Reference Material

More Information
  • Received Date: June 04, 2022
  • Available Online: November 11, 2022
  • Ammonia is a common gaseous contaminants in industrial and agricultural production. The demand for ammonia detection in the market is rapidly increased with the development of the economy. Based on the excellent optical and gas-sensing properties of ZnO, ZnO based materials have been employed the candidate for ammonia gas sensors which has been a research hotspot. Reference material may play a vital role in the process of ammonia gas detection. The reference gas mixture composed of ammonia, oxygen, nitrogen, carbon dioxide and other reference materials can simulate the response of ammonia in the air on the portable ammonia sensor to ensure the accuracy of the developed ammonia sensor. The portable ammonia gas sensor can be verified and calibrated using reference materials, which may ensure the operating stability and reliability of the ammonia sensor.
  • [1]
    郑建旭,管永川,冉慧丽,等. 氨气传感器的应用和研究进展[J]. 化工新型材料,2010,2(38) : 6-8.
    [2]
    GU B, ZHANG Q. Recent advances on functionalized upconversion nanoparticles for detection of small molecules and ions in biosystems[J]. Advanced Science (Weinheim, Baden-Wurttemberg, Germany), 2018, 5(3): 1700609.
    [3]
    CHIESA M, RIGONI F, PADERNO M, et al. Development of low-cost ammonia gas sensors and data analysis algorithms to implement a monitoring grid of urban environmental pollutants[J]. Journal of Environmental Monitoring, 2012, 14(6): 1565-1575.
    [4]
    CHEN G, QIU H, PRASAD P N, et al. Upconver-sion nanoparticles: design, nanochemistry, and applications in theranostics[J]. Chemical Reviews, 2014, 114(10): 5161-5214.
    [5]
    程倩, 于佳酩, 霍薪竹, 等. 稀土氟化物上转换荧光增强及应用[J]. 化学进展, 2019, 31(12): 1681-1695.
    [6]
    王林康, 张玉红, 于兰伊, 等. 面向氨气检测的气敏材料开发现状研究[J]. 传感器世界, 2020, 26(5): 7-11.
    [7]
    苑光伟. 稀土离子掺杂MgO、ZnO、MoO3微纳米材料的制备与发光性质研究[D]. 内蒙古师范大学, 2014.
    [8]
    张海峰,王彬,程彩萍,等. 第一性原理研究Ag掺杂及缺陷共存对ZnO光催化性质的影响[J]. 人工晶体学报, 2021, 50(11): 2027-2035.
    [9]
    袁同伟,张文爽,马志恒, 等. 多面体双壳层Co3O4-ZnO及其CO传感性能[J]. 上海大学学报(自然科学版), 2021, 27(5): 866-878.
    [10]
    徐伟,徐丽慧,柳杨春,等. ZnO/HNTs复合材料的制备及其光催化性能研究[J]. 功能材料, 2021, 52(10): 10121-10127.
    [11]
    魏双,王家松,徐铁民,等. 海泡石化学成分分析标准物质研制[J]. 岩矿测试, 2021, 40(5): 763-773.
    [12]
    陆明. 环境监测质量控制中水质标准物质的应用问题探究[J]. 节能与环保, 2019(12): 97-98.
    [13]
    HAN B, LIU X, XING X, et al. A high response butanol gas sensor based on ZnO hollow spheres [J]Sensors and Actuators B: Chemical, 2016(237): 423-430.
    [14]
    FAN F, TANG P, Wang Y, et al. Facile synthesis and gas sensing properties of tubular hierarchical ZnO self-assembled by porous nanosheets[J].Sensors and Actuators B: Chemical, 2015(215): 231-240.
    [15]
    SEIYAMA T, KAGAWA S. Study on a detector for gaseous components using semiconductive thin films[J]. Analytical Chemistry, 1966, 38(8): 1069-1073.
    [16]
    WANG D, CHU X F, GONG M L. Hydrothermal growth of ZnO nanoscrewdrivers and their gas sensing properties[J]. Nanotechnology, 2007, 18(18): 185-601.
    [17]
    MAHAJAN L, KASAR C, PATIL D. Investigation of optical and electrical properties of lithium doped ZnO nano films[J]. Materials Research Express, 2019, 6(4): 045-053.
    [18]
    杨淑敏, 许少文, 岂云开, 等. Cu掺杂ZnO纳米薄膜的制备与磁性[J]. 四川师范大学学报(自然科学版), 2021, 44(4): 515-520.
    [19]
    李沙沙, 周丹红, 王红艳. 铕掺杂纳米氧化锌发光材料的制备及其性能研究[J]. 光谱实验室, 2013, 30(4): 1710-1713.
    [20]
    WANG Z L. Piezopotential gated nanowire devices: Piezotronics and piezo-phototronies [J]. Nano Today, 2010, 6(5): 540-552.
    [21]
    PERELAER J, SMITH P J, MAGER D, et al. Pri-nted electronics: the challenges involved in printing devices, interconnects, and contacts based on inorganic materials[J]. Journal of Materials Chemistry, 2010, 20(39): 8446-8453.
    [22]
    张志远. 分子束外延及离子共注入技术制备p型ZnO单晶薄膜[D]. 浙江大学, 2018.
    [23]
    李芬, 朱颖, 李刘合, 等. 磁控溅射技术及其发展[J]. 真空电子技术, 2011(3): 49-54.
    [24]
    WU J S, XUE D F. Progress of science and tec-hnology of ZnO as advanced material[J]. Science of Advanced Materials, 2011, 3(2): 127-149.
    [25]
    何双虎. 电化学法制备ZnO纳米结构及其性能研究[D]. 上海交通大学, 2010.
    [26]
    BASU P K, SAHA N, MAJI S, et al. Nanoporous ZnO thin films deposited by electrochemical anodization: effect of UV light[J]. Journal of Materials Science: Materials in Electronics, 2008, 19(6): 493-499.
  • Related Articles

    [1]MENG Jiawei, LÜ Yanhong, CUI Tangyin, BAI Li, XU Haisen, FANG Huiyi, WANG Peng. Effect of Calcination Conditions on Synthesis of Ultrafine ZrB2 Powder by Sol-Gel Method[J]. Development and Application of Materials, 2024, 39(3): 77-81.
    [2]LU Qiaoying. Lattice Boltzmann Simulation of Thermal Marangoni Convection of Al2O3-H2O Nanofluids in Square Cavity[J]. Development and Application of Materials, 2021, 36(2): 1-10.
    [3]GE Zichao. Numerical Simulation of Flow and Heat Transfer Characteristics of Cu-H2O Nanofluids in Microchannel[J]. Development and Application of Materials, 2020, 35(5): 18-26.
    [4]LIU Pan, HE Pengfei, DU Lili. Evaluation of the Uncertainty for the Determination of the Molybdenum Content in Molybdenum Iron by Gravimetric Method based on Monte Carlo Method[J]. Development and Application of Materials, 2018, 33(4): 44-48. DOI: 10.19515/j.cnki.1003-1545.2018.04.008
    [5]LIU Rui, LI Huiying. Study on the Application of Infrared Absorption Method in Carbon Analysis of Vanadium[J]. Development and Application of Materials, 2017, 32(4): 50-54. DOI: 10.19515/j.cnki.1003-1545.2017.04.008
    [6]FU Junsheng, HAO Hongmei, ZHANG Zhong. Determination of Mo and Zr in Al-Mo-Zr Alloy by Inductively Coupled Plasma Atomic Emission Spectrometric Inner Standard Method[J]. Development and Application of Materials, 2016, 31(1): 78-82. DOI: 10.19515/j.cnki.1003-1545.2016.01.018
    [7]YU Hai-tao, WU Liang, LI Guo-hui. The Method of Quasi-optical Resonator for the Measurement of Complex Permittivity of Dielectric Materials[J]. Development and Application of Materials, 2010, 25(3): 54-56. DOI: 10.19515/j.cnki.1003-1545.2010.03.013
    [8]CHEN Sai-shan, LI Cheng. Synthesis of Ca3Co4O9 Powder by EDTA Complexing Sol-Gel Method[J]. Development and Application of Materials, 2010, 25(3): 47-50. DOI: 10.19515/j.cnki.1003-1545.2010.03.011
    [9]LI Xian-xue, WANG Wen-ju, QIU Guo-biao, LUO Xiao-ming, SU Shi-jie. Preparation of Polycrystalline Nd:YAG Nanopowders via Gel Combustion Method[J]. Development and Application of Materials, 2009, 24(2): 33-38. DOI: 10.19515/j.cnki.1003-1545.2009.02.009
    [10]Du Guihuan, Jin Minghui, Qu Xuejun, Zhao Xinli. Preparation of Nanosize ZnO·Al2O3 Powder by Sol-gel Method[J]. Development and Application of Materials, 2002, 17(2): 22-25. DOI: 10.19515/j.cnki.1003-1545.2002.02.008
  • Cited by

    Periodical cited type(0)

    Other cited types(2)

Catalog

    Article Metrics

    Article views (153) PDF downloads (18) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return