FAN Runhua, WANG Zongxiang, YANG Pengtao, LIU Yao. Research Progress on Application of Metamaterials in Ship Equipment[J]. Development and Application of Materials, 2024, 39(5): 1-16.
Citation: FAN Runhua, WANG Zongxiang, YANG Pengtao, LIU Yao. Research Progress on Application of Metamaterials in Ship Equipment[J]. Development and Application of Materials, 2024, 39(5): 1-16.

Research Progress on Application of Metamaterials in Ship Equipment

More Information
  • Received Date: April 08, 2024
  • Available Online: November 19, 2024
  • In recent years, metamaterials have garnered significant interest in ship equipment. The connotation of metamaterials is relatively clear, mainly characterized by artificial structures or negative physical parameters. The inclusive metamaterials, always emerging new types, emphasize structures of materials. With the advancement of processing technology, metamaterials develop toward both micro-nanostructures and large-scale structures. Focusing on the development of ship equipment, we review the research progress and technical challenges of metamaterials faced in fields such as ship stealth, vibration and noise reduction, communication antennas, hydrophobic anti-icing, and discuss the potential applications of metamaterials in ship equipment.
  • [1]
    朱英富, 熊治国, 袁奕, 胡玉龙, 现代水面舰船技术发展思考, 中国舰船研究, 17 (2022) 1-8.
    [2]
    周济. 广义超材料:超材料与常规材料的融合[J]. 中国材料进展, 2018, 37(7): 242-248.
    [3]
    ZHOU Z H, LI H, SUN W Y, et al. Dispersion coding of ENZ media via multiple photonic dopants[J]. Light: Science & Applications, 2022, 11: 207.
    [4]
    张栗铭, 杨德庆. 力学与声学超材料在船舶工程中的应用研究综述[J]. 中国舰船研究, 2023,18(2): 1-19+47.
    [5]
    ENGHETA N. Pursuing near-zero response[J]. Science, 2013, 340(6130): 286-287.
    [6]
    于立伟, 王俊荣, 王树青, 等. 我国极地装备技术发展战略研究[J]. 中国工程科学, 2020, 22(6): 84-93.
    [7]
    尹剑飞, 蔡力, 方鑫, 等. 力学超材料研究进展与减振降噪应用[J]. 力学进展, 2022, 52(3): 508-586.
    [8]
    LA SPADA L, VEGNI L. Metamaterial-based wideband electromagnetic wave absorber[J]. Optics Express, 2016, 24(6): 5763.
    [9]
    SCHURIG D, MOCK J J, JUSTICE B J, et al. Metamaterial electromagnetic cloak at microwave frequencies[J]. Science, 2006, 314(5801): 977-980.
    [10]
    张琤. 基于超材料的隐身技术研究[D]. 南京: 东南大学, 2019.
    [11]
    KIM T, BAE J Y, LEE N, et al. Metamaterials: hierarchical metamaterials for multispectral camouflage of infrared and microwaves (adv. funct. mater. 10/2019)[J]. Advanced Functional Materials, 2019, 29(10): 1970060.
    [12]
    ZHU H Z, LI Q, TAO C N, et al. Multispectral ca-mouflage for infrared, visible, lasers and microwave with radiative cooling[J]. Nature Communications, 2021, 12: 1805.
    [13]
    刘晓明, 任志宇, 陈陆平, 等. 红外隐身超材料[J]. 材料工程, 2020, 48(6): 1-11.
    [14]
    KIM J, HAN K, HAHN J W. Selective dual-band metamaterial perfect absorber for infrared stealth technology[J]. Scientific Reports, 2017, 7: 6740.
    [15]
    CHEN X L, TIAN C H, CHE Z X, et al. Selective metamaterial perfect absorber for infrared and 1.54 μm laser compatible stealth technology[J]. Optik, 2018, 172: 840-846.
    [16]
    ZHANG J K, SHI J M, ZHAO D P, et al. Realization of compatible stealth material for infrared, laser and radar based on one-dimensional doping-structure photonic crystals[J]. Infrared Physics & Technology, 2017, 85: 62-65.
    [17]
    许伟龙, 彭伟才, 张俊杰, 等. 声隐身超材料发展综述[J]. 中国舰船研究, 2020, 15(4): 19-27+35.
    [18]
    LIU Z Y, ZHANG X X, MAO Y W, et al. Locally resonant sonic materials[J]. Science, 2000, 289(5485): 1734-1736.
    [19]
    YANG H B, LI Y, ZHAO H G, et al. Acoustic anechoic layers with singly periodic array of scatterers: computational methods, absorption mechanisms, and optimal design[J]. Chinese Physics B, 2014, 23(10): 104304.
    [20]
    QU S C, GAO N, TINEL A, et al. Underwater metamaterial absorber with impedance-matched composite[J]. Science Advances, 2022, 8(20): eabm4206.
    [21]
    ZHANG Y N, PAN J, CHEN K A, et al. Subwavelength and quasi-perfect underwater sound absorber for multiple and broad frequency bands[J]. The Journal of the Acoustical Society of America, 2018, 144(2): 648-659.
    [22]
    RUAN Y D, LIANG X, WANG Z Y, et al. 3-D underwater acoustic wave focusing by periodic structure[J]. Applied Physics Letters, 2019, 114(8): 081908.
    [23]
    MARTIN T P, NICHOLAS M, ORRIS G J, et al. Sonic gradient index lens for aqueous applications[J]. Applied Physics Letters, 2010, 97(11): 113503.
    [24]
    SU X S, NORRIS A N, CUSHING C W, et al. Broadband focusing of underwater sound using a transparent pentamode lens[J]. The Journal of the Acoustical Society of America, 2017, 141(6): 4408-4417.
    [25]
    许浩, 李邦华. 舱室通风系统设计中的噪声控制[J]. 船海工程, 2018, 47(4): 98-101.
    [26]
    SEO S H, KIM Y H, KIM K J. Design of silencer using resonator arrays with high sound pressure and grazing flow[J]. Applied Acoustics, 2018, 138: 188-198.
    [27]
    LIU Y, DU J T, CHENG L. Bandgap formation under temperature-induced quasi-periodicity in an acoustic duct with flexible walls[J]. Journal of Sound and Vibration, 2020, 486: 115615.
    [28]
    WU D Z, ZHANG N, MAK C, et al. Noise attenu-ation performance of a Helmholtz resonator array consist of several periodic parts[J]. Sensors, 2017, 17(5): 1029.
    [29]
    NGUYEN H, WU Q, XU X C, et al. Broadband acoustic silencer with ventilation based on slit-type Helmholtz resonators[J]. Applied Physics Letters, 2020, 117(13): 134103.
    [30]
    AN B H, LEE J W. Metamaterial-based muffler with broadband tunability in a limited space: optimal design, theoretical investigation and experiment[J]. International Journal of Mechanical Sciences, 2021, 205: 106594.
    [31]
    XIAO Y, WANG S X, LI Y Q, et al. Closed-form bandgap design formulas for beam-type metastructures[J]. Mechanical Systems and Signal Processing, 2021, 159: 107777.
    [32]
    张振华, 牛闯, 钱海峰, 等. 六层金字塔点阵夹芯板结构在水下近距爆炸载荷下的冲击实验[J]. 中国舰船研究, 2016, 11(4): 51-58.
    [33]
    赵业楠, 杨德庆, 王博涵. 声学黑洞俘能器在气垫船舱室噪声控制中的应用研究[J]. 中国造船, 2020, 61(3): 58-67.
    [34]
    CHEN D K, ZI H, LI Y G, et al. Low frequency ship vibration isolation using the band gap concept of sandwich plate-type elastic metastructures[J]. Ocean Engineering, 2021, 235: 109460.
    [35]
    陈建锋, 程强. 基于超材料的导波结构和天线综述[J]. 无线电工程, 2022, 52(2): 192-199.
    [36]
    SUN S, HE Q, HAO J, et al. Electromagnetic metasurfaces: physics and applications[J]. Advances in Optics and Photonics, 2019, 11(2): 380-479.
    [37]
    SILVEIRINHA M, ENGHETA N. Tunneling of electromagnetic energy through subwavelength channels and bends using ε-vear-zero materials[J]. Physical Review Letters, 2006, 97(15): 157403.
    [38]
    KIM J, DUTTA A, NAIK G V, et al. Role of epsil-on-near-zero substrates in the optical response of plasmonic antennas[J]. Optica, 2016, 3(3): 339.
    [39]
    CHENG C, LU Y F, ZHANG D B, et al. Gain enhancement of terahertz patch antennas by coating epsilon-near-zero metamaterials[J]. Superlattices and Microstructures, 2020, 139: 106390.
    [40]
    ABDELGWAD A H, SAID T M. High performance microstrip monopole antenna with loaded metamaterial wire medium superstrate[J]. International Journal of RF and Microwave Computer-Aided Engineering, 2019, 29(5): e21557.
    [41]
    BAYAT M, KHALILPOUR J. A high gain miniatur-ised patch antenna with an epsilon near zero superstrate[J]. Materials Research Express, 2019, 6(4): 045806.
    [42]
    ZHAO Y, CAO X Y, GAO J, et al. Broadband low-RCS circularly polarized array using metasurface-based element[J]. IEEE Antennas and Wireless Propagation Letters, 2848, 16: 1836-1839.
    [43]
    EL BADAWE M, ALMONEEF T S, RAMAHI O M. A true metasurface antenna[J]. Scientific Reports, 2016, 6: 19268.
    [44]
    LIU W, CHEN Z N, QING X M. Metamaterial-based low-profile broadband aperture-coupled grid-slotted patch antenna[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(7): 3325-3329.
    [45]
    LIU G, SUN X S, CHEN X M, et al. A broadband low-profile dual-linearly polarized dipole-driven metasurface antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19(10): 1759-1763.
    [46]
    ZHANG J H, YAN S, VANDENBOSCH G A E. A low-profile frequency reconfigurable antenna with polarization and pattern diversity[C]//2019 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM). Detroit, MI, USA. IEEE, 2019: 1-4.
    [47]
    DAS G, SAHU N K, SHARMA A, et al. FSS-based spatially decoupled back-to-back four-port MIMO DRA with multidirectional pattern diversity[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(8): 1552-1556.
    [48]
    LIAN R N, TANG Z Y, YIN Y Z. Design of a broadband polarization-reconfigurable fabry-perot resonator antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(1): 122-125.
    [49]
    刘鹏. 基于电磁超材料的高性能天线技术研究[D]. 西安: 西安电子科技大学, 2022.
    [50]
    ZHOU L, CHEN X, DUAN X. Fabry-Pérot resonator antenna with high aperture efficiency using a double-layer nonuniform superstrate[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(4): 2061-2066.
    [51]
    DENG F Y, QI J R. Shrinking profile of fabry-perot cavity antennas with stratified metasurfaces: accurate equivalent circuit design and broadband high-gain performance[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19(1): 208-212.
    [52]
    QU S W, LU S L, MA C, et al. K/ka dual-band reflectarray subreflector for ring-focus reflector antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(8): 1567-1571.
    [53]
    张祎轩, 刘涛, 刘耀虎, 等. 极地航行船舶防覆冰涂层研究进展[J]. 表面技术, 2024, 53(6): 1-10.
    [54]
    佟威, 熊党生. 仿生超疏水表面的发展及其应用研究进展[J]. 无机材料学报, 2019, 34(11): 1133-1144.
    [55]
    OTTEN A, HERMINGHAUS S. How plants keep dry: A physicist’s point of view[J]. Langmuir, 2004, 20(6): 2405-2408.
    [56]
    ZANG D, ZHU R, ZHANG W, et al. Corrosion-resistant superhydrophobic coatings on Mg alloy surfaces inspired by lotus seedpod[J]. Advanced Functional Materials, 2017, 27(8): 1605446.
    [57]
    WENG C J, CHANG C H, PENG C W, et al. Advanced anticorrosive coatings prepared from the mimicked xanthosoma sagittifolium-leaf-like electroactive epoxy with synergistic effects of superhydrophobicity and redox catalytic capability[J]. Chemistry of Materials, 2011, 23(8): 2075-2083.
    [58]
    CHENG Z J, ZHANG D J, LV T, et al. Superhydrophobic shape memory polymer arrays with switchable isotropic/anisotropic wetting[J]. Advanced Functional Materials, 2018, 28(7): 1705002.
    [59]
    FENG L, LI S, LI Y, et al. Super-hydrophobic surfaces: from natural to artificial[J]. Advanced Materials, 2002, 14(24): 1857-1860.
    [60]
    FENG L, ZHANG Y N, XI J M, et al. Petal effect: A superhydrophobic state with high adhesive force[J]. Langmuir, 2008, 24(8): 4114-4119.
    [61]
    PARKER A R, LAWRENCE C R. Water capture by a desert beetle[J]. Nature, 2001, 414(6859): 33-34.
    [62]
    SINGHA S K, DAS P K, MAITI B. Influence of salinity on the mechanism of surface icing: implication to the disappearing freezing singularity[J]. Langmuir, 2018, 34(30): 9064-9071.
    [63]
    LIU W, SUN F F, JIANG L, et al. Surface structure patterning for fabricating non-fluorinated superhydrophobic cellulosic membranes[J]. ACS Applied Polymer Materials, 2019, 1(5): 1220-1229.
    [64]
    PENG P P, KE Q P, ZHOU G, et al. Fabrication of microcavity-array superhydrophobic surfaces using an improved template method[J]. Journal of Colloid and Interface Science, 2013, 395: 326-328.
    [65]
    LV D M, SHENG L, WAN J P, et al. Bioinspired hierarchically hairy particles for robust superhydrophobic coatings via a droplet dynamic template method[J]. Polymer Chemistry, 2019, 10(3): 331-335.
    [66]
    CHOI D, YOO J, PARK S M, et al. Facile and cost-effective fabrication of patternable superhydrophobic surfaces via salt dissolution assisted etching[J]. Applied Surface Science, 2017, 393: 449-456.
    [67]
    SCHUTZIUS T M, JUNG S, MAITRA T, et al. Spontaneous droplet trampolining on rigid superhydrophobic surfaces[J]. Nature, 2015, 527(7576): 82-85.
    [68]
    ZHANG W W, WANG S L, XIAO Z, et al. Frosting behavior of superhydrophobic nanoarrays under ultralow temperature[J]. Langmuir, 2017, 33(36): 8891-8898.
    [69]
    RICHARD D, CLANET C, QUÉRÉ D. Contact time of a bouncing drop[J]. Nature, 2002, 417(6891): 811.
    [70]
    HOU Y M, YU M, SHANG Y H, et al. Suppressing ice nucleation of supercooled condensate with biphilic topography[J]. Physical Review Letters, 2018, 120(7): 075902.
    [71]
    KIM P, WONG T S, ALVARENGA J, et al. Liquid-infused nanostructured surfaces with extreme anti-ice and anti-frost performance[J]. ACS Nano, 2012, 6(8): 6569-6577.
    [72]
    WONG T S, KANG S H, TANG S K Y, et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity[J]. Nature, 2011, 477(7365): 443-447.
    [73]
    DING C D, TAI Y, WANG D, et al. Superhydro-phobic composite coating with active corrosion resistance for AZ31B magnesium alloy protection[J]. Chemical Engineering Journal, 2019, 357: 518-532.
  • Related Articles

    [1]ZHANG Dongyang, WANG Zhipeng, LI Yu, LIN Xinzhi, ZHANG Ling. Structure Design and Vibration Characteristic of Constrained Damping Plate[J]. Development and Application of Materials, 2021, 36(1): 51-57.
    [2]ZHANG Xinyue, DU Shijin, CHEN Kaifeng, ZHANG Lili. Accelerated Artificial Aging of Typical Protective Coating System and Analysis on the Aging in South China Sea Environment[J]. Development and Application of Materials, 2020, 35(5): 33-39.
    [3]TU Qinming. Study on Vibration and Noise Reduction Technology of Over-track Building On Metro Depot[J]. Development and Application of Materials, 2019, 34(4): 50-55. DOI: 10.19515/j.cnki.1003-1545.2019.04.010
    [4]CAI Huanhuan, GUO Haochang, ZHU Jun, LUO Wen, LI Xiang, GUO Wantao. Effect of the Stitch Geometry on Mechanical Properties of Sandwich Structures[J]. Development and Application of Materials, 2019, 34(3): 85-89. DOI: 10.19515/j.cnki.1003-1545.2019.03.015
    [5]WU Yibo, GUO Wantao, JI Bing, ZHAO Shulei. Structure Design and Characterization of the Vibration Isolation Performance of the Base[J]. Development and Application of Materials, 2017, 32(2): 94-99. DOI: 10.19515/j.cnki.1003-1545.2017.02.018
    [6]ZHOU Hongbing, WANG Bing, ZHAO Shulei, GUO Wantao. Numerical Simulation Analysis for the Influence of Ageing on the Viscoelastic Damping Materials[J]. Development and Application of Materials, 2016, 31(5): 76-80. DOI: 10.19515/j.cnki.1003-1545.2016.05.017
    [7]MA Ke-feng, ZHANG Guang-cheng, LIU Liang-wei, YAN Zi. Research progress of Technology for Sandwich Structural Absorbing Stealthy Composite Materials[J]. Development and Application of Materials, 2010, 25(6): 53-57. DOI: 10.19515/j.cnki.1003-1545.2010.06.015
    [8]GU Xin-sheng, YAO Run-gang, KONG Hong-yu, LIU Ju. Application of Artificial Neural Network in Welding Technology[J]. Development and Application of Materials, 2010, 25(4): 72-76. DOI: 10.19515/j.cnki.1003-1545.2010.04.018
    [9]ZHAO Shu-lei, GUO Wan-tao, WU Yi-bo. Experimental Study on Vibration Reduction of Composite Stand[J]. Development and Application of Materials, 2009, 24(4): 8-13. DOI: 10.19515/j.cnki.1003-1545.2009.04.003
    [10]SHI Yong, LIU Yu, LIU Xin, WANG Zhi-peng. Application of Sandwich Composite in Submarine Sound Stealth Structure[J]. Development and Application of Materials, 2008, 23(6): 21-25. DOI: 10.19515/j.cnki.1003-1545.2008.06.007

Catalog

    Article Metrics

    Article views (121) PDF downloads (56) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return