Citation: | FAN Runhua, WANG Zongxiang, YANG Pengtao, LIU Yao. Research Progress on Application of Metamaterials in Ship Equipment[J]. Development and Application of Materials, 2024, 39(5): 1-16. |
[1] |
朱英富, 熊治国, 袁奕, 胡玉龙, 现代水面舰船技术发展思考, 中国舰船研究, 17 (2022) 1-8.
|
[2] |
周济. 广义超材料:超材料与常规材料的融合[J]. 中国材料进展, 2018, 37(7): 242-248.
|
[3] |
ZHOU Z H, LI H, SUN W Y, et al. Dispersion coding of ENZ media via multiple photonic dopants[J]. Light: Science & Applications, 2022, 11: 207.
|
[4] |
张栗铭, 杨德庆. 力学与声学超材料在船舶工程中的应用研究综述[J]. 中国舰船研究, 2023,18(2): 1-19+47.
|
[5] |
ENGHETA N. Pursuing near-zero response[J]. Science, 2013, 340(6130): 286-287.
|
[6] |
于立伟, 王俊荣, 王树青, 等. 我国极地装备技术发展战略研究[J]. 中国工程科学, 2020, 22(6): 84-93.
|
[7] |
尹剑飞, 蔡力, 方鑫, 等. 力学超材料研究进展与减振降噪应用[J]. 力学进展, 2022, 52(3): 508-586.
|
[8] |
LA SPADA L, VEGNI L. Metamaterial-based wideband electromagnetic wave absorber[J]. Optics Express, 2016, 24(6): 5763.
|
[9] |
SCHURIG D, MOCK J J, JUSTICE B J, et al. Metamaterial electromagnetic cloak at microwave frequencies[J]. Science, 2006, 314(5801): 977-980.
|
[10] |
张琤. 基于超材料的隐身技术研究[D]. 南京: 东南大学, 2019.
|
[11] |
KIM T, BAE J Y, LEE N, et al. Metamaterials: hierarchical metamaterials for multispectral camouflage of infrared and microwaves (adv. funct. mater. 10/2019)[J]. Advanced Functional Materials, 2019, 29(10): 1970060.
|
[12] |
ZHU H Z, LI Q, TAO C N, et al. Multispectral ca-mouflage for infrared, visible, lasers and microwave with radiative cooling[J]. Nature Communications, 2021, 12: 1805.
|
[13] |
刘晓明, 任志宇, 陈陆平, 等. 红外隐身超材料[J]. 材料工程, 2020, 48(6): 1-11.
|
[14] |
KIM J, HAN K, HAHN J W. Selective dual-band metamaterial perfect absorber for infrared stealth technology[J]. Scientific Reports, 2017, 7: 6740.
|
[15] |
CHEN X L, TIAN C H, CHE Z X, et al. Selective metamaterial perfect absorber for infrared and 1.54 μm laser compatible stealth technology[J]. Optik, 2018, 172: 840-846.
|
[16] |
ZHANG J K, SHI J M, ZHAO D P, et al. Realization of compatible stealth material for infrared, laser and radar based on one-dimensional doping-structure photonic crystals[J]. Infrared Physics & Technology, 2017, 85: 62-65.
|
[17] |
许伟龙, 彭伟才, 张俊杰, 等. 声隐身超材料发展综述[J]. 中国舰船研究, 2020, 15(4): 19-27+35.
|
[18] |
LIU Z Y, ZHANG X X, MAO Y W, et al. Locally resonant sonic materials[J]. Science, 2000, 289(5485): 1734-1736.
|
[19] |
YANG H B, LI Y, ZHAO H G, et al. Acoustic anechoic layers with singly periodic array of scatterers: computational methods, absorption mechanisms, and optimal design[J]. Chinese Physics B, 2014, 23(10): 104304.
|
[20] |
QU S C, GAO N, TINEL A, et al. Underwater metamaterial absorber with impedance-matched composite[J]. Science Advances, 2022, 8(20): eabm4206.
|
[21] |
ZHANG Y N, PAN J, CHEN K A, et al. Subwavelength and quasi-perfect underwater sound absorber for multiple and broad frequency bands[J]. The Journal of the Acoustical Society of America, 2018, 144(2): 648-659.
|
[22] |
RUAN Y D, LIANG X, WANG Z Y, et al. 3-D underwater acoustic wave focusing by periodic structure[J]. Applied Physics Letters, 2019, 114(8): 081908.
|
[23] |
MARTIN T P, NICHOLAS M, ORRIS G J, et al. Sonic gradient index lens for aqueous applications[J]. Applied Physics Letters, 2010, 97(11): 113503.
|
[24] |
SU X S, NORRIS A N, CUSHING C W, et al. Broadband focusing of underwater sound using a transparent pentamode lens[J]. The Journal of the Acoustical Society of America, 2017, 141(6): 4408-4417.
|
[25] |
许浩, 李邦华. 舱室通风系统设计中的噪声控制[J]. 船海工程, 2018, 47(4): 98-101.
|
[26] |
SEO S H, KIM Y H, KIM K J. Design of silencer using resonator arrays with high sound pressure and grazing flow[J]. Applied Acoustics, 2018, 138: 188-198.
|
[27] |
LIU Y, DU J T, CHENG L. Bandgap formation under temperature-induced quasi-periodicity in an acoustic duct with flexible walls[J]. Journal of Sound and Vibration, 2020, 486: 115615.
|
[28] |
WU D Z, ZHANG N, MAK C, et al. Noise attenu-ation performance of a Helmholtz resonator array consist of several periodic parts[J]. Sensors, 2017, 17(5): 1029.
|
[29] |
NGUYEN H, WU Q, XU X C, et al. Broadband acoustic silencer with ventilation based on slit-type Helmholtz resonators[J]. Applied Physics Letters, 2020, 117(13): 134103.
|
[30] |
AN B H, LEE J W. Metamaterial-based muffler with broadband tunability in a limited space: optimal design, theoretical investigation and experiment[J]. International Journal of Mechanical Sciences, 2021, 205: 106594.
|
[31] |
XIAO Y, WANG S X, LI Y Q, et al. Closed-form bandgap design formulas for beam-type metastructures[J]. Mechanical Systems and Signal Processing, 2021, 159: 107777.
|
[32] |
张振华, 牛闯, 钱海峰, 等. 六层金字塔点阵夹芯板结构在水下近距爆炸载荷下的冲击实验[J]. 中国舰船研究, 2016, 11(4): 51-58.
|
[33] |
赵业楠, 杨德庆, 王博涵. 声学黑洞俘能器在气垫船舱室噪声控制中的应用研究[J]. 中国造船, 2020, 61(3): 58-67.
|
[34] |
CHEN D K, ZI H, LI Y G, et al. Low frequency ship vibration isolation using the band gap concept of sandwich plate-type elastic metastructures[J]. Ocean Engineering, 2021, 235: 109460.
|
[35] |
陈建锋, 程强. 基于超材料的导波结构和天线综述[J]. 无线电工程, 2022, 52(2): 192-199.
|
[36] |
SUN S, HE Q, HAO J, et al. Electromagnetic metasurfaces: physics and applications[J]. Advances in Optics and Photonics, 2019, 11(2): 380-479.
|
[37] |
SILVEIRINHA M, ENGHETA N. Tunneling of electromagnetic energy through subwavelength channels and bends using ε-vear-zero materials[J]. Physical Review Letters, 2006, 97(15): 157403.
|
[38] |
KIM J, DUTTA A, NAIK G V, et al. Role of epsil-on-near-zero substrates in the optical response of plasmonic antennas[J]. Optica, 2016, 3(3): 339.
|
[39] |
CHENG C, LU Y F, ZHANG D B, et al. Gain enhancement of terahertz patch antennas by coating epsilon-near-zero metamaterials[J]. Superlattices and Microstructures, 2020, 139: 106390.
|
[40] |
ABDELGWAD A H, SAID T M. High performance microstrip monopole antenna with loaded metamaterial wire medium superstrate[J]. International Journal of RF and Microwave Computer-Aided Engineering, 2019, 29(5): e21557.
|
[41] |
BAYAT M, KHALILPOUR J. A high gain miniatur-ised patch antenna with an epsilon near zero superstrate[J]. Materials Research Express, 2019, 6(4): 045806.
|
[42] |
ZHAO Y, CAO X Y, GAO J, et al. Broadband low-RCS circularly polarized array using metasurface-based element[J]. IEEE Antennas and Wireless Propagation Letters, 2848, 16: 1836-1839.
|
[43] |
EL BADAWE M, ALMONEEF T S, RAMAHI O M. A true metasurface antenna[J]. Scientific Reports, 2016, 6: 19268.
|
[44] |
LIU W, CHEN Z N, QING X M. Metamaterial-based low-profile broadband aperture-coupled grid-slotted patch antenna[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(7): 3325-3329.
|
[45] |
LIU G, SUN X S, CHEN X M, et al. A broadband low-profile dual-linearly polarized dipole-driven metasurface antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19(10): 1759-1763.
|
[46] |
ZHANG J H, YAN S, VANDENBOSCH G A E. A low-profile frequency reconfigurable antenna with polarization and pattern diversity[C]//2019 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM). Detroit, MI, USA. IEEE, 2019: 1-4.
|
[47] |
DAS G, SAHU N K, SHARMA A, et al. FSS-based spatially decoupled back-to-back four-port MIMO DRA with multidirectional pattern diversity[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(8): 1552-1556.
|
[48] |
LIAN R N, TANG Z Y, YIN Y Z. Design of a broadband polarization-reconfigurable fabry-perot resonator antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(1): 122-125.
|
[49] |
刘鹏. 基于电磁超材料的高性能天线技术研究[D]. 西安: 西安电子科技大学, 2022.
|
[50] |
ZHOU L, CHEN X, DUAN X. Fabry-Pérot resonator antenna with high aperture efficiency using a double-layer nonuniform superstrate[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(4): 2061-2066.
|
[51] |
DENG F Y, QI J R. Shrinking profile of fabry-perot cavity antennas with stratified metasurfaces: accurate equivalent circuit design and broadband high-gain performance[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19(1): 208-212.
|
[52] |
QU S W, LU S L, MA C, et al. K/ka dual-band reflectarray subreflector for ring-focus reflector antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(8): 1567-1571.
|
[53] |
张祎轩, 刘涛, 刘耀虎, 等. 极地航行船舶防覆冰涂层研究进展[J]. 表面技术, 2024, 53(6): 1-10.
|
[54] |
佟威, 熊党生. 仿生超疏水表面的发展及其应用研究进展[J]. 无机材料学报, 2019, 34(11): 1133-1144.
|
[55] |
OTTEN A, HERMINGHAUS S. How plants keep dry: A physicist’s point of view[J]. Langmuir, 2004, 20(6): 2405-2408.
|
[56] |
ZANG D, ZHU R, ZHANG W, et al. Corrosion-resistant superhydrophobic coatings on Mg alloy surfaces inspired by lotus seedpod[J]. Advanced Functional Materials, 2017, 27(8): 1605446.
|
[57] |
WENG C J, CHANG C H, PENG C W, et al. Advanced anticorrosive coatings prepared from the mimicked xanthosoma sagittifolium-leaf-like electroactive epoxy with synergistic effects of superhydrophobicity and redox catalytic capability[J]. Chemistry of Materials, 2011, 23(8): 2075-2083.
|
[58] |
CHENG Z J, ZHANG D J, LV T, et al. Superhydrophobic shape memory polymer arrays with switchable isotropic/anisotropic wetting[J]. Advanced Functional Materials, 2018, 28(7): 1705002.
|
[59] |
FENG L, LI S, LI Y, et al. Super-hydrophobic surfaces: from natural to artificial[J]. Advanced Materials, 2002, 14(24): 1857-1860.
|
[60] |
FENG L, ZHANG Y N, XI J M, et al. Petal effect: A superhydrophobic state with high adhesive force[J]. Langmuir, 2008, 24(8): 4114-4119.
|
[61] |
PARKER A R, LAWRENCE C R. Water capture by a desert beetle[J]. Nature, 2001, 414(6859): 33-34.
|
[62] |
SINGHA S K, DAS P K, MAITI B. Influence of salinity on the mechanism of surface icing: implication to the disappearing freezing singularity[J]. Langmuir, 2018, 34(30): 9064-9071.
|
[63] |
LIU W, SUN F F, JIANG L, et al. Surface structure patterning for fabricating non-fluorinated superhydrophobic cellulosic membranes[J]. ACS Applied Polymer Materials, 2019, 1(5): 1220-1229.
|
[64] |
PENG P P, KE Q P, ZHOU G, et al. Fabrication of microcavity-array superhydrophobic surfaces using an improved template method[J]. Journal of Colloid and Interface Science, 2013, 395: 326-328.
|
[65] |
LV D M, SHENG L, WAN J P, et al. Bioinspired hierarchically hairy particles for robust superhydrophobic coatings via a droplet dynamic template method[J]. Polymer Chemistry, 2019, 10(3): 331-335.
|
[66] |
CHOI D, YOO J, PARK S M, et al. Facile and cost-effective fabrication of patternable superhydrophobic surfaces via salt dissolution assisted etching[J]. Applied Surface Science, 2017, 393: 449-456.
|
[67] |
SCHUTZIUS T M, JUNG S, MAITRA T, et al. Spontaneous droplet trampolining on rigid superhydrophobic surfaces[J]. Nature, 2015, 527(7576): 82-85.
|
[68] |
ZHANG W W, WANG S L, XIAO Z, et al. Frosting behavior of superhydrophobic nanoarrays under ultralow temperature[J]. Langmuir, 2017, 33(36): 8891-8898.
|
[69] |
RICHARD D, CLANET C, QUÉRÉ D. Contact time of a bouncing drop[J]. Nature, 2002, 417(6891): 811.
|
[70] |
HOU Y M, YU M, SHANG Y H, et al. Suppressing ice nucleation of supercooled condensate with biphilic topography[J]. Physical Review Letters, 2018, 120(7): 075902.
|
[71] |
KIM P, WONG T S, ALVARENGA J, et al. Liquid-infused nanostructured surfaces with extreme anti-ice and anti-frost performance[J]. ACS Nano, 2012, 6(8): 6569-6577.
|
[72] |
WONG T S, KANG S H, TANG S K Y, et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity[J]. Nature, 2011, 477(7365): 443-447.
|
[73] |
DING C D, TAI Y, WANG D, et al. Superhydro-phobic composite coating with active corrosion resistance for AZ31B magnesium alloy protection[J]. Chemical Engineering Journal, 2019, 357: 518-532.
|
[1] | ZHANG Dongyang, WANG Zhipeng, LI Yu, LIN Xinzhi, ZHANG Ling. Structure Design and Vibration Characteristic of Constrained Damping Plate[J]. Development and Application of Materials, 2021, 36(1): 51-57. |
[2] | ZHANG Xinyue, DU Shijin, CHEN Kaifeng, ZHANG Lili. Accelerated Artificial Aging of Typical Protective Coating System and Analysis on the Aging in South China Sea Environment[J]. Development and Application of Materials, 2020, 35(5): 33-39. |
[3] | TU Qinming. Study on Vibration and Noise Reduction Technology of Over-track Building On Metro Depot[J]. Development and Application of Materials, 2019, 34(4): 50-55. DOI: 10.19515/j.cnki.1003-1545.2019.04.010 |
[4] | CAI Huanhuan, GUO Haochang, ZHU Jun, LUO Wen, LI Xiang, GUO Wantao. Effect of the Stitch Geometry on Mechanical Properties of Sandwich Structures[J]. Development and Application of Materials, 2019, 34(3): 85-89. DOI: 10.19515/j.cnki.1003-1545.2019.03.015 |
[5] | WU Yibo, GUO Wantao, JI Bing, ZHAO Shulei. Structure Design and Characterization of the Vibration Isolation Performance of the Base[J]. Development and Application of Materials, 2017, 32(2): 94-99. DOI: 10.19515/j.cnki.1003-1545.2017.02.018 |
[6] | ZHOU Hongbing, WANG Bing, ZHAO Shulei, GUO Wantao. Numerical Simulation Analysis for the Influence of Ageing on the Viscoelastic Damping Materials[J]. Development and Application of Materials, 2016, 31(5): 76-80. DOI: 10.19515/j.cnki.1003-1545.2016.05.017 |
[7] | MA Ke-feng, ZHANG Guang-cheng, LIU Liang-wei, YAN Zi. Research progress of Technology for Sandwich Structural Absorbing Stealthy Composite Materials[J]. Development and Application of Materials, 2010, 25(6): 53-57. DOI: 10.19515/j.cnki.1003-1545.2010.06.015 |
[8] | GU Xin-sheng, YAO Run-gang, KONG Hong-yu, LIU Ju. Application of Artificial Neural Network in Welding Technology[J]. Development and Application of Materials, 2010, 25(4): 72-76. DOI: 10.19515/j.cnki.1003-1545.2010.04.018 |
[9] | ZHAO Shu-lei, GUO Wan-tao, WU Yi-bo. Experimental Study on Vibration Reduction of Composite Stand[J]. Development and Application of Materials, 2009, 24(4): 8-13. DOI: 10.19515/j.cnki.1003-1545.2009.04.003 |
[10] | SHI Yong, LIU Yu, LIU Xin, WANG Zhi-peng. Application of Sandwich Composite in Submarine Sound Stealth Structure[J]. Development and Application of Materials, 2008, 23(6): 21-25. DOI: 10.19515/j.cnki.1003-1545.2008.06.007 |