ZHANG Yajun, ZHANG Xinyao, ZHANG Yunhao. Pertinence of Material Constants in Paris Model for Fatigue Crack Propagation Rate of Metallic Materials[J]. Development and Application of Materials, 2021, 36(4): 1-8.
Citation: ZHANG Yajun, ZHANG Xinyao, ZHANG Yunhao. Pertinence of Material Constants in Paris Model for Fatigue Crack Propagation Rate of Metallic Materials[J]. Development and Application of Materials, 2021, 36(4): 1-8.

Pertinence of Material Constants in Paris Model for Fatigue Crack Propagation Rate of Metallic Materials

More Information
  • Received Date: May 19, 2020
  • Available Online: June 17, 2021
  • Fatigue crack propagation rate of metallic materials is an important index of mechanical property, which is employed for damage tolerance design and fatigue life assessment in engineering application. Paris model is the most popular expression for fatigue crack propagation rate, and the relation of fatigue crack propagation rate and stress intensity factor range at the crack front is believed to meet a power-function rule in the model. The model involves in two material constants of C and m. In this paper, based on some test data published in some literatures, the relationships between material constants of C and m in Paris model for fatigue crack propagation rate of metallic materials of alloy steels, copper alloy, titanium alloy and aluminum alloy were analyzed. The results indicated that the constants of C and m of different types of metallic materials satisfied good linear relationship, namely m=alnC+b, which was not affected by specimen sampling orientation, weld position, and test environment. Stress ratios had great influence on the linear relationship, especially when the stress ratio value was negative. The slopes of the linear models for different metallic materials were not equivalent and the influencing factors should be further researched systematically. The analyzing results would provide reference for fatigue design and application in engineering.
  • [1]
    庄力健,高增梁,王效贵,等.16MnR钢在不同应力比下的疲劳裂纹扩展的试验研究及模拟[J].压力容器,2007,24(3):1-7.
    [2]
    熊缨,陈冰冰,郑三龙,等.16MnR钢在不同条件下的疲劳裂纹扩展规律[J].金属学报,2009,45(7):849-855.
    [3]
    束德林,编.工程材料力学性能[M].北京:机械工业出版社,2008:104-109.
    [4]
    殷之平,编.结构疲劳与断裂[M].西安:西北工业大学出版社,2012:82-83.
    [5]
    石德珂,金志浩,编.材料的力学性能[M].西安:西安交通大学出版社,2005:125-131.
    [6]
    倪向贵,李新亮,王秀喜.疲劳裂纹扩展规律Paris公式的一般修正及应用[J].压力容器,2006,23(12):8-15.
    [7]
    PARIS P,ERDOGAN F.A critical analysis of crack propagation laws[J].J.Basic.Eng.1963,85(4):528-534.
    [8]
    董达善,梅潇.Q235材料的Paris常数C、m及△Kth值测试[J].机械强度,2003,25(2):215-218.
    [9]
    盛伟,刘天琦,马少俊,等.不同条件下300M钢的疲劳裂纹扩展行为[J].机械工程材料,2017,41(6):17-24.
    [10]
    张亚军,李永军,梁健,等.螺旋桨用铜合金ZCuAl8Mn14Fe3Ni2的疲劳裂纹扩展特性[J].材料开发与应用,2010,25(5):1-3.
    [11]
    文磊磊,周昌玉,李建,等.TA2钛合金焊接接头不同区域的疲劳裂纹扩展速率[J].机械工程材料,2017,41(11):39-44.
    [12]
    吴学仁,编.飞机结构金属材料力学性能手册第3卷腐蚀疲劳[M].北京:航空工业出版社,1996:230-258.
    [13]
    YOKOBORI T,AIZAWA T.The influence of temperature and stress intensity factor upon the striation spacing and fatigue crack propagation rate of aluminum alloy[J].International Journal of Fracture,1973,9(4):489-491.
    [14]
    BATHIAS C,PINEAU A,著.材料与结构的疲劳[M].吴圣川,李源,王清远,译.北京:国防工业出版社,2016:146-147.
  • Related Articles

    [1]GUO Xiang, WANG Min, ZHAO Liming. Research on Elastic Material Parameter Inversion and Prediction Model Based on Dynamic and Static Tests of Rubber Isolator[J]. Development and Application of Materials, 2023, 38(1): 73-80.
    [2]ZHANG Yajun, ZHANG Xinyao, ZHANG Yunhao. Analysis on Application of Different Models for Fatigue Crack Propagation Rate of Metallic Materials[J]. Development and Application of Materials, 2021, 36(2): 88-92.
    [3]CHENG Yingjin, WANG Tao, XUE Gang, WANG Renfu. The Statistical analysis on the Paris's Fatigue Model Parameters and Prediction on Fatigue Crack Growth Life of 10Ni5CrMoV Steel and Its Joint[J]. Development and Application of Materials, 2019, 34(1): 1-6. DOI: 10.19515/j.cnki.1003-1545.2019.01.001
    [4]ZHANG Ya-jun. A New Method for Measuring Fatigue Damage of Metallic Materials under Cantilever Bend Loading[J]. Development and Application of Materials, 2014, 29(3): 1-5. DOI: 10.19515/j.cnki.1003-1545.2014.03.001
    [5]ZHANG Zhen-hua, ZHAO Ran, SUN Chang-meng, ZHANG Fan, HAO Wan-jun, CHEN Dong-wei. Study on Inversion Permittivity of Composite Material Based on Plate-Reflection Method[J]. Development and Application of Materials, 2012, 27(3): 33-37. DOI: 10.19515/j.cnki.1003-1545.2012.03.009
    [6]LI Yu-ming, BAI Hong-bo, ZHENG Jian. Fatigue Characteristic of Metal Rubber Material[J]. Development and Application of Materials, 2011, 26(5): 49-53,59. DOI: 10.19515/j.cnki.1003-1545.2011.05.012
    [7]YU Hai-tao, WU Liang, LI Guo-hui. The Method of Quasi-optical Resonator for the Measurement of Complex Permittivity of Dielectric Materials[J]. Development and Application of Materials, 2010, 25(3): 54-56. DOI: 10.19515/j.cnki.1003-1545.2010.03.013
    [8]FU Yu-bin. Review of Corrosion Influenced by Biofilm on Metallic Materials(Ⅰ)[J]. Development and Application of Materials, 2006, 21(1): 34-39. DOI: 10.19515/j.cnki.1003-1545.2006.01.010
    [9]Li Qing. Metallic Materials and Surface Treatment Used in Body[J]. Development and Application of Materials, 2000, 15(4): 40-45. DOI: 10.19515/j.cnki.1003-1545.2000.04.011
    [10]Yuan Jingsong. Approximate Calculation of Crack Propagation Rate of Metal Corrosion Fatigue[J]. Development and Application of Materials, 2000, 15(2): 26-29. DOI: 10.19515/j.cnki.1003-1545.2000.02.007
  • Cited by

    Periodical cited type(9)

    1. 耿庆涛,杨丽,曲凤娇,韩宝明,黄盛林. 不同应力比对6005A铝合金裂纹扩展速率的影响研究. 轨道交通材料. 2025(02): 51-54 .
    2. 刘硕,王启慧,王志鹏. 激光增材制造体育器材用TC4钛合金疲劳裂纹扩展行为研究. 精密成形工程. 2024(01): 59-65 .
    3. 张亚军,张新烨,徐阳,单建军,张欣耀. 不同驱动参量的金属材料疲劳裂纹扩展速率模型综述. 热加工工艺. 2024(05): 119-123 .
    4. 赵健,凌静秀,柳世鸣,吴勉. 空间多点分布载荷下TBM刀盘应力强度因子分析. 福建理工大学学报. 2024(06): 560-566 .
    5. 张均红. 金属材料裂纹自愈合的热处理试验方法及结果分析. 科技创新与应用. 2023(20): 59-62 .
    6. 郭鹏辉,刘世军,徐文博,娄世宇,窦小鹏,禹文涛. 造粒机组主齿轮箱输出齿轮轴断裂失效分析. 机械传动. 2023(09): 151-159 .
    7. 田万鹏. 显微组织对X80钢疲劳裂纹扩展行为的影响. 南方金属. 2023(05): 1-6 .
    8. 戚钊,王斌,张鹏,刘睿,张振军,张哲峰. 应力比对含缺陷选区激光熔化TC4合金稳态疲劳裂纹扩展速率的影响. 金属学报. 2023(10): 1411-1418 .
    9. 吴鲁纪,杨世豪,杨林杰,李优华. 硬齿面齿轮齿根裂纹扩展特性与剩余寿命研究. 机械传动. 2023(11): 1-8 .

    Other cited types(10)

Catalog

    Article Metrics

    Article views (1038) PDF downloads (111) Cited by(19)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return