Citation: | DANG Ning, WEI Chen, HUI Cheng, YANG Yuanyu, YANG Shangyu, WANG Jianjun, HAN Lihong. Development of Three-dimensional Characterizations and Electro-pulse Repairing Technology for Forming Defects within Ti Component by Laser Additive Manufacturing[J]. Development and Application of Materials, 2024, 39(4): 83-97. |
[1] |
王金友,葛志明,周彦邦.钛合金在航空上的应用[M].上海:上海科技出版社, 1985.
|
[2] |
訾群.钛合金研究新进展及应用现状[J].钛工业进展, 2008, 25(2):23-27.
|
[3] |
王华,赵坦,陈妍.载人深潜器耐压壳体用金属材料研发进展[J].材料开发与应用, 2023, 38(3):88-95.
|
[4] |
张文娟,杨帆,陈超鹏.钛合金微结构力学性能和氢扩散分析[J].材料开发与应用, 2023, 38(3):43-50.
|
[5] |
王华明,张述泉,王向明.大型钛合金结构件激光直接制造的进展与挑战[J].中国激光, 2009, 36(12):3204-3209.
|
[6] |
林鑫,黄卫东.应用于航空领域的金属高性能增材制造技术[J].中国材料进展, 2015, 34(9):684-688.
|
[7] |
周瀚森,施佳慧,徐博文,等.船舶增材制造的认可与船级社标准分析[J].材料开发与应用, 2023, 38(3):63-68.
|
[8] |
DAI D H, GU D D. Tailoring surface quality through mass and momentum transfer modeling using a volume of fluid method in selective laser melting of TiC/AlSi10Mg Powder[J]. International Journal of Machine Tools and Manufacture, 2015, 88:95-107.
|
[9] |
GONG H, RAFI K, STARR T, et al. Effect of defects on fatigue tests of as-built Ti-6Al-4V parts fabricated by selective laser melting:solid freeform fabrication symposium[C]//23rd Annual International Solid Freeform Fabrication Symposium-An Additive Manufacturing Conference. Austin:the University of Texas at Austin, 2012.
|
[10] |
DADBAKHSH S, HAO L, SEWELL N. Effect of selective laser melting layout on the quality of stainless steel parts[J]. Rapid Prototyping Journal, 2012, 18(3):241-249.
|
[11] |
WEI Q S, ZHAO X, WANG L, et al. Effects of the processing parameters on the forming quality of stainless steel parts by selective laser melting[J]. Advanced Materials Research, 2011, 189-193:3668-3671.
|
[12] |
赵沧,杨源祺,师博,等.金属激光增材制造微观结构和缺陷原位实时监测[J].科学通报, 2022, 67(25):3036-3053.
|
[13] |
LE K Q, TANG C, WONG C H. A study on the influence of scanning strategies on the levelness of the melt track in selective laser melting process of stainless steel powder[J]. JOM, 2018, 70(10):2082-2087.
|
[14] |
WANG L, WEI Q S, SHI Y S, et al. Experimental investigation into the single-track of selective laser melting of IN625[J]. Advanced Materials Research, 2011, 233-235:2844-2848.
|
[15] |
PENG T, CHEN C. Influence of energy density on energy demand and porosity of 316L stainless steel fabricated by selective laser melting[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2018, 5(1):55-62.
|
[16] |
RASHID R, MASOOD S H, RUAN D, et al. Effect of scan strategy on density and metallurgical properties of 17-4PH parts printed by Selective Laser Melting (SLM)[J]. Journal of Materials Processing Technology, 2017, 249:502-511.
|
[17] |
JHABVALA J, BOILLAT E, ANTIGNAC T, et al. On the effect of scanning strategies in the selective laser melting process[J]. Virtual and Physical Prototyping, 2010, 5(2):99-109.
|
[18] |
CHENG B, SHRESTHA S, CHOU Y K. Stress and deformation evaluations of scanning strategy effect in selective laser melting[C]//Volume 3:Joint MSEC-NAMRC Symposia. Blacksburg:American Society of Mechanical Engineers, 2016:240-251.
|
[19] |
PARRY L, ASHCROFT I A, WILDMAN R D. Understanding the effect of laser scan strategy on residual stress in selective laser melting through thermo-mechanical simulation[J]. Additive Manufacturing, 2016, 12:1-15.
|
[20] |
GONG H J, RAFI K, GU H F, et al. Analysis of defect generation in Ti-6Al-4V parts made using powder bed fusion additive manufacturing processes[J]. Additive Manufacturing, 2014, 1-4:87-98.
|
[21] |
BISWAL R, SYED A K, ZHANG X. Assessment of the effect of isolated porosity defects on the fatigue performance of additive manufactured titanium alloy[J]. Additive Manufacturing, 2018, 23:433-442.
|
[22] |
WILSON-HEID A E, BEESE A M. Combined effects of porosity and stress state on the failure behavior of laser powder bed fusion stainless steel 316L[J]. Additive Manufacturing, 2021, 39:101862.
|
[23] |
ROMANO S, ABEL A, GUMPINGER J, et al. Qu-ality control of AlSi10Mg produced by SLM:Metallography versus CT scans for critical defect size assessment[J]. Additive Manufacturing, 2019, 28:394-405.
|
[24] |
SHERIDAN L, SCOTT-EMUAKPOR O E, GEORGE T, et al. Relating porosity to fatigue failure in additively manufactured alloy 718[J]. Materials Science and Engineering:A, 2018, 727:170-176.
|
[25] |
LE V D, PESSARD E, MOREL F, et al. Influence of porosity on the fatigue behaviour of additively fabricated TA6V alloys[J]. MATEC Web of Conferences, 2018, 165:02008.
|
[26] |
GONG H J, RAFI K, GU H F, et al. Influence of defects on mechanical properties of Ti-6Al-4V components produced by selective laser melting and electron beam melting[J]. Materials&Design, 2015, 86:545-554.
|
[27] |
GALARRAGA H, LADOS D A, DEHOFF R R, et al. Effects of the microstructure and porosity on properties of Ti-6Al-4V ELI alloy fabricated by electron beam melting (EBM)[J]. Additive Manufacturing, 2016, 10:47-57.
|
[28] |
TAMMAS-WILLIAMS S, WITHERS P J, TODD I, et al. The influence of porosity on fatigue crack initiation in additively manufactured titanium components[J]. Scientific Reports, 2017, 7:7308.
|
[29] |
HRABE N, GNÄUPEL-HEROLD T, QUINN T. Fatigue properties of a titanium alloy (Ti-6Al-4V) fabricated via electron beam melting (EBM):effects of internal defects and residual stress[J]. International Journal of Fatigue, 2017, 94:202-210.
|
[30] |
MARGERIT P, WEISZ-PATRAULT D, RAVICH-ANDAR K, et al. Tensile and ductile fracture properties of as-printed 316L stainless steel thin walls obtained by directed energy deposition[J]. Additive Manufacturing, 2021, 37:101664.
|
[31] |
殷杰,郝亮,杨亮亮,等.激光选区熔化增材制造中金属蒸气与飞溅相互作用研究[J].中国激光, 2022, 49(14):1402202.
|
[32] |
CUNNINGHAM R, ZHAO C, PARAB N, et al. Keyhole threshold and morphology in laser melting revealed by ultrahigh-speed X-ray imaging[J]. Science, 2019, 363(6429):849-852.
|
[33] |
赵永庆.钛合金相变及热处理[M].长沙:中南大学出版社, 2012.
|
[34] |
VIJAYARAGHAVAN T V, MARGOLIN H. The effect of matrix strength on void nucleation and growth in an alpha-beta titanium alloy, CORONA-5[J]. Metallurgical Transactions A, 1988, 19(3):591-601.
|
[35] |
NARENDRNATH K R, MARGOLIN H. The effect of matrix strength on void nucleation and growth in a widmanstätten alpha-beta titanium alloy, CORONA-5[J]. Metallurgical Transactions A, 1988, 19(5):1163-1171.
|
[36] |
VIJAYARAGHAVAN T V, MARGOLIN H. Observations on void nucleation and growth in α/β Ti-Mn alloys[J]. Metallurgical Transactions A, 1988, 19(5):1311-1317.
|
[37] |
KRISHNA M R Y, KUTUMBARAO V V, RAMA R P. Influence of microstructure on void nucleation and growth in a near-α titanium alloy IMI 685[J]. Materials Science and Engineering:A, 1989, 110:193-202.
|
[38] |
DANG N, LIU L Y, MAIRE E, et al. Analysis of shear stress promoting void evolution behavior in an α/β Ti alloy with fully lamellar microstructure[J]. Materials Science and Engineering:A, 2018, 737:27-39.
|
[39] |
ZHANG X C, ZHONG F, SHAO J B, et al. Failure mechanism and mode of Ti-6Al-4V alloy under uniaxial tensile loading:experiments and micromechanical modeling[J]. Materials Science and Engineering:A, 2016, 676:536-545.
|
[40] |
DANG N, CHEN S, LIU L Y, et al. Analysis of hybrid fracture in α/β titanium alloy with lamellar microstructure[J]. Materials Science and Engineering:A, 2019, 744:54-63.
|
[41] |
THIJS L, VERHAEGHE F, CRAEGHS T, et al. A study of the microstructural evolution during selective laser melting of Ti-6Al-4V[J]. Acta Materialia, 2010, 58(9):3303-3312.
|
[42] |
LI J F, WEI Z Y. Process optimization and microstructure characterization of Ti6Al4V manufactured by selective laser melting[J]. IOP Conference Series:Materials Science and Engineering, 2017, 269:012026.
|
[43] |
RAFI H K, KARTHIK N V, GONG H J, et al. Microstructures and mechanical properties of Ti6Al4V parts fabricated by selective laser melting and electron beam melting[J]. Journal of Materials Engineering and Performance, 2013, 22(12):3872-3883.
|
[44] |
SONG B, DONG S J, ZHANG B C, et al. Effects of processing parameters on microstructure and mechanical property of selective laser melted Ti6Al4V[J]. Materials&Design, 2012, 35:120-125.
|
[45] |
SONG B, DONG S J, LIAO H L, et al. Process parameter selection for selective laser melting of Ti6Al4V based on temperature distribution simulation and experimental sintering[J]. The International Journal of Advanced Manufacturing Technology, 2012, 61(9):967-974.
|
[46] |
SUN J F, YANG Y Q, WANG D. Parametric optimization of selective laser melting for forming Ti6Al4V samples by Taguchi method[J]. Optics Laser Technology, 2013, 49:118-124.
|
[47] |
SIMONELLI M, TSE Y Y, TUCK C. Microstructure of Ti-6Al-4V produced by selective laser melting[J]. Journal of Physics:Conference Series, 2012, 371:012084.
|
[48] |
SIMONELLI M, TSE Y Y, TUCK C. On the texture formation of selective laser melted Ti-6Al-4V[J]. Metallurgical and Materials Transactions A, 2014, 45(6):2863-2872.
|
[49] |
BOURGEOIS M, FEAUGAS X, CLAVEL M. Fract-ure of an α/β titanium alloy under stress triaxiality states at 773 K[J]. Scripta Materialia, 1996, 34(9):1483-1490.
|
[50] |
HELBERT A L, FEAUGAS X, CLAVEL M. The influence of stress trlaxiality on the damage mechanisms in an equiaxed α/β Ti-6AI-4V alloy[J]. Metallurgical and Materials Transactions A, 1996, 27(10):3043-3058.
|
[51] |
SEMIATIN S L, SEETHARAMAN V, GHOSH A K, et al. Cavitation during hot tension testing of Ti-6Al-4V[J]. Materials Science and Engineering:A, 1998, 256(1-2):92-110.
|
[52] |
NICOLAOU P D, SEMIATIN S L. Modeling of cavity coalescence during tensile deformation[J]. Acta Materialia, 1999, 47(13):3679-3686.
|
[53] |
NICOLAOU P D, SEMIATIN S L. An analysis of the effect of continuous nucleation and coalescence on cavitation during hot tension testing[J]. Acta Materialia, 2000, 48(13):3441-3450.
|
[54] |
XUE Q, MEYERS M A, NESTERENKO V F. Self-organization of shear bands in titanium and Ti-6Al-4V alloy[J]. Acta Materialia, 2002, 50(3):575-596.
|
[55] |
NICOLAOU P D, SEMIATIN S L. An experimental and theoretical investigation of the influence of stress state on cavitation during hot working[J]. Acta Materialia, 2003, 51(3):613-623.
|
[56] |
BIELER T R, NICOLAOU P D, SEMIATIN S L. An experimental and theoretical investigation of the effect of local colony orientations and misorientation on cavitation during hot working of Ti-6Al-4V[J]. Metallurgical and Materials Transactions A, 2005, 36(1):129-140.
|
[57] |
KUMAR J, SRIVATHSA B, KUMAR V. Stress triaxiality effect on fracture behavior of IMI-834 titanium alloy:a micromechanics approach[J]. Materials&Design, 2009, 30(4):1118-1123.
|
[58] |
ROY S, SUWAS S. On the absence of shear cracking and grain boundary cavitation in secondary tensile regions of Ti-6Al-4V-0.1B alloy during hot (α+β)-compression[J]. Philosophical Magazine, 2014, 94(5):447-463.
|
[59] |
OSOVSKI S, SRIVASTAVA A, WILLIAMS J C, et al. Grain boundary crack growth in metastable titanium β alloys[J]. Acta Materialia, 2015, 82:167-178.
|
[60] |
ALLAHVERDIZADEH N, GILIOLI A, MANES A, et al. An experimental and numerical study for the damage characterization of a Ti-6AL-4V titanium alloy[J]. International Journal of Mechanical Sciences, 2015, 93:32-47.
|
[61] |
MAIRE E, WITHERS P J. Quantitative X-ray tomography[J]. International Materials Reviews, 2014, 59(1):1-43.
|
[62] |
WU S C, XIAO T Q, WITHERS P J. The imaging of failure in structural materials by synchrotron radiation X-ray microtomography[J]. Engineering Fracture Mechanics, 2017, 182:127-156.
|
[63] |
DANG N, LIU L Y, ADRIEN J, et al. Crack nucleation and growth in α/β titanium alloy with lamellar microstructure under uniaxial tension:3D X-ray tomography analysis[J]. Materials Science and Engineering:A, 2019, 747:154-160.
|
[64] |
YADROITSEV I, KRAKHMALEV P, YADROITSA-VA I, et al. Qualification of Ti6Al4V ELI alloy produced by laser powder bed fusion for biomedical applications[J]. JOM, 2018, 70(3):372-377.
|
[65] |
ABBASI K. X-ray tomography and serial sectioning investigation of creep damage in copper[D]. Saint-Etienne:Ecole des Mines de Saint-Etienne, 2013.
|
[66] |
HOLZER L, CANTONI M. Review of FIB tomography[M]. Nanofabrication using focused ion and electron Beams, Oxford:Oxford University Press, 2011.
|
[67] |
KRAL M V, MANGAN M A, SPANOS G, et al. Three-dimensional analysis of microstructures[J]. Materials Characterization, 2000, 45(1):17-23.
|
[68] |
贾志宏,王雪丽,邢远,等.基于FIB的三维表征分析技术及应用进展[J].中国材料进展, 2013, 32(12):735-741.
|
[69] |
SHARMA H, VAN BOHEMEN S M C, PETROV R H, et al. Three-dimensional analysis of microstructures in titanium[J]. Acta Materialia, 2010, 58(7):2399-2407.
|
[70] |
GHOSH S, BHANDARI Y, GROEBER M. CAD-based reconstruction of 3D polycrystalline alloy microstructures from FIB generated serial sections[J]. Computer-Aided Design, 2008, 40(3):293-310.
|
[71] |
REQUENA G, CLOETENS P, ALTENDORFER W, et al. Sub-micrometer synchrotron tomography of multiphase metals using Kirkpatrick-Baez optics[J]. Scripta Materialia, 2009, 61(7):760-763.
|
[72] |
LUDWIG W, REISCHIG P, KING A, et al. Three-dimensional grain mapping by X-ray diffraction contrast tomography and the use of Friedel pairs in diffraction data analysis[J]. Review of Scientific Instruments, 2009, 80(3):033905.
|
[73] |
Dang N. 3D visualization of microstructure morphology and damage evolution for dual phase titanium alloy[D]. Lyon:INSA de Lyon, 2020.
|
[74] |
CHOO H, WHITE L P, XIAO X H, et al. Deformation and fracture behavior of a laser powder bed fusion processed stainless steel:in situ synchrotron X-ray computed microtomography study[J]. Additive Manufacturing, 2021, 40:101914.
|
[75] |
ZIÓŁKOWSKI G, GRUBER K, TOKARCZYK E, et al. X-ray Computed Tomography for the ex-situ mechanical testing and simulation of additively manufactured IN718 samples[J]. Additive Manufacturing, 2021, 45:102070.
|
[76] |
SANKARA NARAYANAN T S N, KIM J, JEONG H E, et al. Enhancement of the surface properties of selective laser melted maraging steel by large pulsed electron-beam irradiation[J]. Additive Manufacturing, 2020, 33:101125.
|
[77] |
KAN W H, NADOT Y, FOLEY M, et al. Factors that affect the properties of additively-manufactured AlSi10Mg:Porosity versus microstructure[J]. Additive Manufacturing, 2019, 29:100805.
|
[78] |
YEGYAN K A, BAI Y, EKLUND A, et al. The effects of Hot Isostatic Pressing on parts fabricated by binder jetting additive manufacturing[J]. Additive Manufacturing, 2018, 24:115-124.
|
[79] |
CHEN C Y, XIE Y C, YAN X C, et al. Effect of hot isostatic pressing (HIP) on microstructure and mechanical properties of Ti6Al4V alloy fabricated by cold spray additive manufacturing[J]. Additive Manufacturing, 2019, 27:595-605.
|
[80] |
GOEL S, SITTIHO A, CHARIT I, et al. Effect of post-treatments under hot isostatic pressure on microstructural characteristics of EBM-built Alloy 718[J]. Additive Manufacturing, 2019, 28:727-737.
|
[81] |
PERSENOT T, BURR A, PLANCHER E, et al. Eff-ect of ultrasonic shot peening on the surface defects of thin struts built by electron beam melting:consequences on fatigue resistance[J]. Additive Manufacturing, 2019, 28:821-830.
|
[82] |
CONRAD H, WHITE J, CAO W D, et al. Effect of electric current pulses on fatigue characteristics of polycrystalline copper[J]. Materials Science and Engineering:A, 1991, 145(1):0921509391902904.
|
[83] |
LAI Z H, MA C X, CONRAD H. Cyclic softening by high density electric current pulses during low cycle fatigue of α-Ti[J]. Scripta Metallurgica et Materialia, 1992, 27(5):527-531.
|
[84] |
高海根.脉冲电流对热作模具钢热疲劳行为的影响[D].长春:吉林大学, 2007.
|
[85] |
晁月盛,滕功清,谢春辉,等.高密度脉冲电流对Fe-Si-B非晶合金晶化过程的影响[J].金属学报, 1996, 32(11):1204-1208.
|
[86] |
MIZUBAYASHI H, OKUDA S. Structural relaxation induced by passing electric current in amorphous Cu50Ti50 at low temperatures[J]. Physical Review B, 1989, 40(11):8057-8060.
|
[87] |
ZHOU Y Z, ZENG Y, HE G H, et al. The healing of quenched crack in 1045 steel under electropulsing[J]. Journal of Materials Research, 2001, 16(1):17-19.
|
[88] |
SONG H, WANG Z J. Microcrack healing and local recrystallization in pre-deformed sheet by high density electropulsing[J]. Materials Science and Engineering:A, 2008, 490(1-2):1-6.
|
[89] |
LEVITIN V V, LOSKUTOV S V. The effect of a current pulse on the fatigue of titanium alloy[J]. Solid State Communications, 2004, 131(3-4):181-183.
|
[90] |
沈以赴,周本镰,何冠虎,等.材料疲劳恢复新途径的探索I--低碳钢疲劳寿命的延长[J].材料研究学报, 1996, 10(2):165-168.
|
[91] |
白象忠,付宇明,高殿全,等.低合金模具钢脉冲放电止裂的宏微观分析[J].模具工业, 2001, 27(8):43-46.
|
[92] |
CAI G X, YUAN F G. Electric current-induced stresses at the crack tip in conductors[J]. International Journal of Fracture, 1999, 96(3):279-301.
|
[93] |
汪青杰,高明,陈皓.导电薄板内裂纹尖端区域的电磁应力[J].材料科学与工艺, 2005, 13(2):175-177.
|
[94] |
邓德伟,刘倩倩,牛婷婷,等.脉冲电流对奥氏体不锈钢止裂效果的影响[J].热加工工艺, 2015, 44(16):49-52.
|
[95] |
ZHOU Y Z, QIN R S, XIAO S H, et al. Reversing effect of electropulsing on damage of 1045 steel[J]. Journal of Materials Research, 2000, 15(5):1056-1061.
|
[96] |
LIN H Q, ZHAO Y G, GAO Z M, et al. Effects of pulse current stimulation on the thermal fatigue crack propagation behavior of CHWD steel[J]. Materials Science and Engineering:A, 2008, 478(1-2):93-100.
|
[97] |
肖素红.高密度脉冲电流处理对疲劳铜单晶位错结构的影响及其机制[D].沈阳:中国科学院金属研究所, 2002.
|
[98] |
XIAO S H, GUO J D, WU S D, et al. Recrystallization in fatigued copper single crystals under electropulsing[J]. Scripta Materialia, 2002, 46(1):1-6.
|
[99] |
沈以赴,郭晓楠,姚戈,等.材料疲劳恢复新途径的探索II--脉冲电流对Ti-6Al-4V合金裂纹扩展的阻滞[J].材料研究学报, 1999, 13(4):381-384.
|
[100] |
PAN D, ZHAO Y G, XU X F, et al. A novel strengthening and toughening strategy for T250 maraging steel:cluster-orientation governed higher strength-ductility combination induced by electropulsing[J]. Materials&Design, 2019, 169:107686.
|
[101] |
ZHENG X G, SHI Y N, LU K. Electro-healing cracks in nickel[J]. Materials Science and Engineering:A, 2013, 561:52-59.
|
[102] |
REN X W, WANG Z J, FANG X, et al. The plastic flow model in the healing process of internal microcracks in pre-deformed TC4 sheet by pulse current[J]. Materials&Design, 2020, 188:108428.
|
[103] |
ZHAO S T, ZHANG R P, CHONG Y, et al. Defect reconfiguration in a Ti-Al alloy via electroplasticity[J]. Nature Materials, 2021, 20:468-472.
|
[104] |
KUMAR A, PAUL S K. Healing of fatigue crack in steel with the application of pulsed electric current[J]. Materialia, 2020, 14:100906.
|
[105] |
WARYOBA D, ISLAM Z, WANG B M, et al. Low temperature annealing of metals with electrical wind force effects[J]. Journal of Materials Science&Technology, 2019, 35(4):465-472.
|
[106] |
KUKUDZHANOV K V, LEVITIN A L. Phase transformations in metals stimulated by a pulsed high-energy electromagnetic field[J]. Procedia IUTAM, 2017, 23:84-100.
|
[107] |
WANG X B, HE X F, WANG T S, et al. Internal pores in DED Ti-6.5Al-2Zr-Mo-V alloy and their influence on crack initiation and fatigue life in the mid-life regime[J]. Additive Manufacturing, 2019, 28:373-393.
|
[108] |
宋辉,王忠金. Ti及TiAl合金的电致增塑性[J].材料科学与工艺, 2013, 21(5):117-124.
|
[1] | LI Qiulong, XU Zhe, GUO Jiguan, LIU Xiangqian, LI Peiyue, YU Yan. Research on Effect of Defect Dimension on Diffusion Bonding of Printed Circuit Heat Exchanger[J]. Development and Application of Materials, 2021, 36(2): 74-78. |
[2] | LIU Qianli, DENG Xianhui, FAN Jinwei, TIAN Dehou, JIANG Feng, ZHANG Linlin, JIANG Peng. Analysis on Surface Defect of Ultra-long and Ultra-thin Titanium Slab Ingot during Electron Beam Cold Hearth Melting[J]. Development and Application of Materials, 2020, 35(5): 69-75. |
[3] | LI Bo-bo, CHEN Tao, LIU Yin-qi, BAO Shu-juan. Analysis on Delamination Defects of Cold Rolled Titanium Strip[J]. Development and Application of Materials, 2015, 30(5): 35-39. DOI: 10.19515/j.cnki.1003-1545.2015.05.007 |
[4] | HUANG Wei-zhong, LIN Ying-jun, ZHOU Jian. Relationship between Particle Defects of PVC and Filler Size[J]. Development and Application of Materials, 2015, 30(2): 26-31. DOI: 10.19515/j.cnki.1003-1545.2015.02.006 |
[5] | LIANG Yu, WEI Wei-rong, HOU Jing, LIU Yuan-yong, WANG Zuo-qiang, GAO Yuan, ZHANG Hai-bing. Damage Assessment and Reparation Method for Injured Submarine Lined Pipes[J]. Development and Application of Materials, 2014, 29(5): 52-56. DOI: 10.19515/j.cnki.1003-1545.2014.05.010 |
[6] | CHEN Wei, ZHAN Yao, GAOZhen-xuan. Defects and Process Control in Production of Copper-Nickel Alloy Ingot Casting[J]. Development and Application of Materials, 2012, 27(6): 54-57. DOI: 10.19515/j.cnki.1003-1545.2012.06.013 |
[7] | ZHAO Bin. The Influence of Macroscopic Defects On the Critical Current of HTS Bi-2223 Tapes[J]. Development and Application of Materials, 2012, 27(3): 10-12. DOI: 10.19515/j.cnki.1003-1545.2012.03.003 |
[8] | ZHANG Jie, CHEN Ji-zhi, FENG Gang-xian. Research Progress of Effect of Porosity on the Fatigue Behavior in the Cast Alloy[J]. Development and Application of Materials, 2011, 26(5): 83-87. DOI: 10.19515/j.cnki.1003-1545.2011.05.020 |
[9] | SONG Xi-ning, LI Wen-ying, ZHANG Tian-hui. Welding Method Effect Research on Defects Type of Steel WDB620[J]. Development and Application of Materials, 2009, 24(6): 15-18. DOI: 10.19515/j.cnki.1003-1545.2009.06.004 |
[10] | Fu Bufang. Analyses on Defects of Manual Molding RPUF[J]. Development and Application of Materials, 2002, 17(2): 31-33. DOI: 10.19515/j.cnki.1003-1545.2002.02.010 |