Volume 36 Issue 5
Oct.  2021
Turn off MathJax
Article Contents
WANG Desheng, WANG Zhenghong, WANG Pengyun, ZHANG Fanxing, CHU Shaoqi, LI Li, XIE Shufeng, FENG Yan. Microstructures and Fatigue Crack Growth Rates of Domestic and Imported 5083-H116 Aliuminum Alloy[J]. Development and Application of Materials, 2021, 36(5): 20-29.
Citation: WANG Desheng, WANG Zhenghong, WANG Pengyun, ZHANG Fanxing, CHU Shaoqi, LI Li, XIE Shufeng, FENG Yan. Microstructures and Fatigue Crack Growth Rates of Domestic and Imported 5083-H116 Aliuminum Alloy[J]. Development and Application of Materials, 2021, 36(5): 20-29.

Microstructures and Fatigue Crack Growth Rates of Domestic and Imported 5083-H116 Aliuminum Alloy

  • Received Date: 2021-03-29
  • Publish Date: 2021-10-25
  • The microstructures and fatigue crack growth behavior of domestic and imported 5083-H116 aluminum alloys were researched. Experimental results showed that the chemical constitutions of domestic and imported 5083-H116 aluminum alloys both met the standard requirements. Both of the microstructures of do mestic and imported alloys contain a lot of coarse second phases, and the latter more. The grain size and distribution of imported alloy were apparently smaller and more uniform than those of domestic alloy. Compared with the imported alloy, domestic alloy had higher tensile strength and yield strength and lower elongation. The fracture analysis showed that the fracture was both featured with three typical regions. Fatigue striations were observed in both alloys at the crack initiation area, and the area in domestic alloy presented delamination and was flatter than the imported one. The fatigue crack growth rate of imported alloy was lower than that of domestic alloy, and the crack growth rate of imported alloy decreased by more than 32% when ΔK=15 MPa·m1/2. Obvious fatigue striations were observed at the crack propagation area, and the intervals were respectively 0.405 5 μm and 0.282 3 μm. At the transient break area, the imported alloy had more and smaller dimples.

     

  • loading
  • [1]
    肖亚庆, 万时云.铝加工技术实用手册[M].北京:冶金工业出版社, 2005.
    [2]
    罗兵辉, 单毅敏, 柏振海.退火温度对淬火后冷轧5083铝合金组织及腐蚀性能的影响[J].中南大学学报(自然科学版), 2007, 38(5):802-808.
    [3]
    刘静安, 罗昭敏.现代铝及铝加工业的发展特点及国内外发展水平对比[J].铝加工, 2009(3):38-45.
    [4]
    吕新宇.5083铝合金热轧板研究[J].轻合金加工技术, 2002, 30(3):15-19.
    [5]
    郝志刚, 黄晶, 时羽, 等.5083铝合金大规格扁锭熔铸工艺研究[J].轻合金加工技术, 2006, 34(7):15-17.
    [6]
    马鹏程.5xxx系铝合金板材的组织和织构对其成形性和锯齿屈服行为的影响[D].北京:北京科技大学, 2015.
    [7]
    周庆波, 张宏伟, 冷金凤, 等.化学成分对5083铝合金性能的影响[J].轻合金加工技术, 2007, 35(10):33-34.
    [8]
    孟宪伟, 周成候, 戴忠晨, 等.A5083P-O铝合金MIG焊接接头组织及疲劳性能研究[J].电焊机, 2014, 44(9):144-147.
    [9]
    周琳, 金成, 刘建, 等.焊缝余高对A5083铝合金焊接接头低温疲劳性能的影响[J].热加工工艺, 2017, 46(21):64-67.
    [10]
    佟建华, 张坤, 林松, 等.搅拌摩擦焊和熔化极气体保护焊6082铝合金疲劳性能分析[J].焊接学报, 2015, 36(7):105-108.
    [11]
    张健, 雷振, 王旭友.高速列车6005A铝合金型材焊接热裂纹分析[J].焊接学报, 2012, 33(8):60-64.
    [12]
    闫亮, 杜凤山, 戴圣龙, 等.微观组织对2E12铝合金疲劳裂纹扩展的影响[J].中国有色金属学报, 2010, 20(7):1275-1281.
    [13]
    葛荣山, 张永安, 李志辉, 等.2E12和2524铝合金微观组织与疲劳裂纹扩展速率研究[J].稀有金属, 2011, 35(4):600-606.
    [14]
    肖晓玲, 刘宏伟, 詹浩, 等.5083铝合金组织中第二相的形态及微观结构[J].中国有色金属学报, 2018, 28(12):2441-2449.
    [15]
    牛振.船用5083铝合金CO2激光焊接焊缝成形质量研究[D].北京:北京工业大学, 2008.
    [16]
    DESMUKH M N, PANDEY R K, MUKHOPADHYAY A K.Effect of aging treatments on the kinetics offatigue crack growth in 7010 aluminum alloy[J].Materials Science and Engineering:A, 2006, 435-436:318-326.
    [17]
    杜凤山, 闫亮, 戴圣龙, 等.高强铝合金疲劳特性研究[J].航空材料学报, 2009, 29(1):96-100.
    [18]
    SURESH S, RITCHIE R O.Propagation of short fatigue cracks[J].International Metals Reviews, 1984, 29(1):445-475.
    [19]
    雷欣, 聂祚仁, 黄晖.含铒铝合金显微组织对疲劳裂纹扩展的影响[J].稀有金属材料与工程, 2016, 45(4):1035-1039.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (143) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return