Volume 38 Issue 2
Apr.  2023
Turn off MathJax
Article Contents
QIAO Baobao, CHEN Runhua, LING Jie, ZHANG Xiaomei, LI Xiang. Design and Research of the Intelligent Grinding System of the Marine Composite Structure[J]. Development and Application of Materials, 2023, 38(2): 67-75.
Citation: QIAO Baobao, CHEN Runhua, LING Jie, ZHANG Xiaomei, LI Xiang. Design and Research of the Intelligent Grinding System of the Marine Composite Structure[J]. Development and Application of Materials, 2023, 38(2): 67-75.

Design and Research of the Intelligent Grinding System of the Marine Composite Structure

  • Received Date: 2022-07-08
    Available Online: 2023-05-06
  • The characteristics and problems of the large-scale integrated molding marine composite components are analyzed, and the latest application status at home and abroad is explained. Based on the study above, the AGV composite robot intelligent grinding system is designed to solve the problems. The key technologies like the automatically generated grinding trajectoryof robot are introduced. Finally, the system is tested physically. The grinding efficiency is improved by more than 10 times compared with that of the manual grinding, the grinding mechanical roughness reaches 0.63 μm, and the linear precision reaches 0.5 mm, which can fully meet the practical use requirements of the marine composite components. The development of a high-performance AGV composite robot intelligent grinding system can not only improve the grinding quality and efficiency of the large-scale integrated molding marine composite components, but also provide an effective research platform for realizing other processing processes for the large-scale marine composite components, thus laying the foundation for the subsequent digital, clustered and pulsed production of the same type of products.

     

  • loading
  • [1]
    顾轶卓, 李敏, 李艳霞, 等. 飞行器结构用复合材料制造技术与工艺理论进展[J]. 航空学报, 2015, 36(8):2773-2797.
    [2]
    刘监波, 刘文玺, 周其斗, 等. 水下结构物舱壁振动控制的结构参数优化研究[J]. 中国舰船研究, 2010, 5(6):21-25.
    [3]
    钱伯章. 船用碳纤维复合材料的发展趋势[J]. 合成纤维, 2020, 49(7):57-58.
    [4]
    庞英杰. 风电叶片打磨机器人设计与分析[D]. 秦皇岛:燕山大学, 2021.
    [5]
    祁萌, 李晓红, 高彬彬. 国外航空领域机器人技术发展现状与趋势分析[J]. 航空制造技术, 2018, 61(12):97-101.
    [6]
    丰飞, 严思杰, 丁汉. 大型风电叶片多机器人协同磨抛系统的设计与研究[J]. 机器人技术与应用, 2018(5):16-24.
    [7]
    彭远红. 数控车间AGV小车系统控制设计[D]. 广州:广东工业大学, 2020.
    [8]
    陈显宝, 金隼, 罗磊, 等. 基于视觉定位的AGV定位精度提高方法[J]. 机械设计与研究, 2021, 37(1):36-40.
    [9]
    王胜华, 都东, 张文增, 等. 机器人定点变位姿手-眼标定方法[J]. 清华大学学报(自然科学版), 2007, 47(2):165-168.
    [10]
    韩帅. 基于工业相机的图像采集与回放系统研究[D]. 太原:中北大学, 2015.
    [11]
    王海霖, 黄祥兵, 彭飞, 等. 基于三维点云的加筋圆柱壳体圆度测量及初挠度计算[J]. 中国舰船研究, 2016, 11(6):65-69.
    [12]
    段志鑫. 三维激光扫描数据精简、表面重构方法及应用研究[D]. 徐州:中国矿业大学, 2019.
    [13]
    叶永龙. 基于机器人的玻璃自动打磨系统的设计与实现[D]. 杭州:浙江理工大学, 2013.
    [14]
    张煜. 机器人曲面加工的视觉引导与运动控制方法研究[D]. 长沙:湖南大学, 2019.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (64) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return