Citation: | SUN Yangzi, TONG Zhongzheng. Research Progress of Intrinsically Thermally Conductive Insulating Polymer Materials[J]. Development and Application of Materials, 2023, 38(1): 98-108. |
[1] |
穆静静,赵悦菊,滕济林,等.导热绝缘高分子材料研究与制备[J].电子世界, 2016(11):91.
|
[2] |
LEWIS J S, PERRIER T, BARANI Z, et al. Thermal interface materials with graphene fillers:review of the state of the art and outlook for future applications[J]. Nanotechnology, 2021, 32(14):142003.
|
[3] |
赵健康,赵鹏,陈铮铮,等.高压直流电缆绝缘材料研究进展评述[J].高电压技术, 2017, 43(11):3490-3503.
|
[4] |
田恐虎,吴阳,盛绍顶,等.聚合物基绝缘导热复合材料中碳系填料的研究进展[J].复合材料学报, 2021, 38(4):1054-1065.
|
[5] |
AHMED A, QAYOUM A. Investigation on the thermal degradation, moisture absorption characteristics and antibacterial behavior of natural insulation materials[J]. Materials for Renewable and Sustainable Energy, 2021, 10(1):4.
|
[6] |
CHEN J H. Thermal insulation design for efficient and scalable solar water interfacial evaporation and purification[J]. Journal of Materials Science&Technology, 2021, 66:157-162.
|
[7] |
HASEGAWA M, NAGAI S, SOKABE S, et al. Liq-uidcrystalline behavior and thermal conductivity of vinyl polymers containing benzoxazole side groups[J]. Polymer International, 2021, 70(6):812-822.
|
[8] |
LIU H B. The flexible film of SCF/BN/PDMS composites with high thermal conductivity and electrical insulation[J]. Composites Communications, 2021, 23:100573.
|
[9] |
AGARI Y, UEDA A, NAGAI S. Thermal conductivity of a polymer composite[J]. Journal of Applied Polymer Science, 1993, 49(9):1625-1634.
|
[10] |
TSEKMES I A, KOCHETOV R, MORSHUIS P H F, et al. Modeling the thermal conductivity of polymeric composites based on experimental observations[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2014, 21(2):412-423.
|
[11] |
XIAO M, DU B X. Review of high thermal conductivity polymer dielectrics for electrical insulation[J]. High Voltage, 2016, 1(1):34-42.
|
[12] |
BAO Y, ZHAO X Y. The research applications of new heat insulation composite material in automobiles[J]. Heat Transfer-Asian Research, 2018, 47(1):103-110.
|
[13] |
GONG X T, Feng S M. Eigen equation of super insulation materials[J]. Computational Condensed Matter, 2018, 14:133-136.
|
[14] |
QIN L L, LI G H, HOU J, et al. Preparation, characterization, and thermal properties of poly (methyl-methacrylate)/boron nitride composites by bulk polymerization[J]. Polymer Composites, 2014, 36(9):1675-1684.
|
[15] |
赵亚林,周正荣,马俊丽,等.环氧树脂基导热复合材料研究进展[J].高分子通报, 2020(12):18-23.
|
[16] |
ZHOU W Y. Thermal and dielectric properties of the AlN particles reinforced linear low-density poly-ethylene composites[J]. Thermochimica Acta, 2011, 512(1-2):183-188.
|
[17] |
费川,刘毅鑫.氧化铝导热增强聚酰亚胺薄膜的制备和表征[J].纤维复合材料, 2020, 37(3):27-29.
|
[18] |
NAN B F, XIAO L, WU K, et al. Covalently introducing amino-functionalized nanodiamond into water-borne polyurethane via in situ polymerization:enha-nced thermal conductivity and excellent electrical insulation[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2020, 596:124752.
|
[19] |
张凯,桂泰江,吴连锋,等.导热绝缘聚合物复合材料的研究进展[J].材料导报, 2021, 35(S1):571-575.
|
[20] |
王克智.塑料助剂的开发及应用:抗静电剂[J].塑料科技, 1996, 24(4):42-51.
|
[21] |
吴雄,陈轩恕,杨跃强,等.水性环氧树脂对聚合物水泥混凝土材料电气性能的影响[J].绝缘材料, 2018, 51(1):27-33.
|
[22] |
林木松,郭坤,张晟,等.电缆绝缘聚合物材料的老化成因机理及其研究现状[J].高分子材料科学与工程, 2017, 33(12):149-155.
|
[23] |
HARADA M, OCHI M, TOBITA M, et al. Thermal-conductivity properties of liquid-crystalline epoxy resin cured under a magnetic field[J]. Journal of Polymer Science Part B:Polymer Physics, 2003, 41(14):1739-1743.
|
[24] |
BENICEWICZ B C, SMITH M E, EARLS J D, et al. Magnetic field orientation of liquid crystalline epoxy thermosets[J]. Macromolecules, 1998, 31(15):4730-4738.
|
[25] |
SHIOTA A, OBER C K. Orientation of liquid crystalline epoxides under ac electric fields[J]. Macromolecules, 1997, 30(15):4278-4287.
|
[26] |
SONG S H, KATAGI H, TAKEZAWA Y, et al. Study on high thermal conductivity of mesogenic epoxy resin with spherulite structure[J]. Polymer, 2012, 53(20):4489-4492.
|
[27] |
YANG X T. High-efficiency improvement of thermal conductivities for epoxy composites from synthesized liquid crystal epoxy followed by doping BN fillers[J]. Composites Part B:Engineering, 2020, 185:107784.
|
[28] |
TANG N, TANAKA S, TAKEZAWA Y, et al. Highly anisotropic thermal conductivity of mesogenic epoxy resin film through orientation control[J]. Journal of Applied Polymer Science, 2021, 138(47):51396.
|
[29] |
HAMMERSCHMIDT A, GEIBEL K, STROHMER F. In situ photopolymerized, oriented liquid-crystalline diacrylates with high thermal conductivities[J]. Advanced Materials, 1993, 5(2):107-109.
|
[30] |
KIM D G, KIM Y H, SHIN T J, et al. Highly anisotropic thermal conductivity of discotic nematic liquid crystalline films with homeotropic alignment[J]. Che-mical Communications, 2017, 53(58):8227-8230.
|
[31] |
CHOY C L, CHEN F C, LUK W H. Thermal conductivity of oriented crystalline polymers[J]. Journal of Polymer Science:Polymer Physics Edition, 1980, 18(6):1187-1207.
|
[32] |
CHOY C L, FEI Y, XI T G. Thermal conductivity of gel-spun polyethylene fibers[J]. Journal of Polymer Science Part B:Polymer Physics, 1993, 31(3):365-370.
|
[33] |
GUPTA S, SCHIEBER J D, VENERUS D C. Anisotropic thermal conduction in polymer melts in uniaxial elongation flows[J]. Journal of Rheology, 2013, 57(2):427-439.
|
[34] |
SHEN S, HENRY A, TONG J, et al. Polyethylene nanofibres with very high thermal conductivities[J]. Nature Nanotechnology, 2010, 5(4):251-255.
|
[35] |
FUJISHIRO H, IKEBE M, KASHIMA T, et al. Thermal conductivity and diffusivity of high-strength polymer fibers[J]. Japanese Journal of Applied Physics, 1997, 36(Part 1, No. 9A):5633-5637.
|
[36] |
WANG X J, HO V, SEGALMAN R, et al. Thermal conductivity of high-modulus polymer fibers[J]. Macromolecules, 2013, 46(12):4937-4943.
|
[37] |
LIANG Y, WENG L, ZHANG W L, et al. Block polypropylene/styrene-ethylene-butylene-styrene tri-block copolymer blends for recyclable HVDC cable insulation[J]. Materials Research Express, 2020, 7(8):085301.
|
[38] |
GREEN C D, VAUGHAN A S, STEVENS G C, et al. Thermoplastic cable insulation comprising a blend of isotactic polypropylene and a propylene-ethylene copolymer[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22(2):639-648.
|
[39] |
CHIEN H C, PENG W T, CHIU T H, et al. Heat transfer of semicrystalline nylon nanofibers[J]. ACS Nano, 2020, 14(3):2939-2946.
|
[40] |
XUE J J, WU T, DAI Y Q, et al. Electrospinning and electrospun nanofibers:methods, materials, and applications[J]. Chemical Reviews, 2019, 119(8):5298-5415.
|
[41] |
KISHAN A P, COSGRIFF-HERNANDEZ E M. Re-cent advancements in electrospinning design for tissue engineering applications:a review[J]. Journal of Biomedical Materials Research Part A, 2017, 105(10):2892-2905.
|
[42] |
CHEN L, WANG S, YU Q Q, et al. A comprehensive review of electrospinning block copolymers[J]. Soft Matter, 2019, 15(12):2490-2510.
|
[43] |
GHAFFARI-MOSANENZADEH S, AGHABABAEI TAFRESHI O, DAMMEN-BROWER E, et al. A review on high thermally conductive polymeric compo-sites[J]. Polymer Composites, 2022, 43(2):692-711.
|
[44] |
GIBSON A G, GREIG D, SAHOTA M, et al. Therm-al conductivity of ultrahigh-modulus polyethylene[J]. Journal of Polymer Science:Polymer Letters Edition, 1977, 15(4):183-192.
|
[45] |
MA J, ZHANG Q, MAYO A, et al. Thermal conductivity of electrospun polyethylene nanofibers[J]. Nanoscale, 2015, 7(40):16899-16908.
|
[46] |
ZHONG Z X, WINGERT M C, STRZALKA J, et al. Structure-induced enhancement of thermal conductivities in electrospun polymer nanofibers[J]. Nanoscale, 2014, 6(14):8283-8291.
|
[47] |
LU C H, CHIANG S W, DU H D, et al. Thermal conductivity of electrospinning chain-aligned polyethylene oxide (PEO)[J]. Polymer, 2017, 115:52-59.
|
[48] |
DODD S J, SUTTON S J, CHAMPION J V, et al. Influence of morphology on electrical treeing in polyethylene blends[J]. IEE Proceedings-Science, Measurement and Technology, 2003, 150(2):58-64.
|
[49] |
ZHANG Y H, PARK M, PARK S J. Implication of thermally conductive nanodiamond-interspersed gr-aphite nanoplatelet hybrids in thermoset composites with superior thermal management capability[J]. Scientific Reports, 2019, 9:2893.
|
[50] |
XU X F, CHEN J, ZHOU J, et al. Thermal conductivity of polymers and their nanocomposites[J]. Advanced Materials (Deerfield Beach, Fla), 2018, 30(17):e1705544.
|
[51] |
FENG C P, CHEN L B, TIAN G L, et al. Multifunctional thermal management materials with excellent heat dissipation and generation capability for future electronics[J]. ACS Applied Materials&Interfaces, 2019, 11(20):18739-18745.
|
[52] |
LIU Z D, CHEN Y P, LI Y F, et al. Graphene foam-embedded epoxy composites with significant thermal conductivity enhancement[J]. Nanoscale, 2019, 11(38):17600-17606.
|
[53] |
JIANG F, CUI S Q, RUNGNIM C, et al. Control of a dual-cross-linked boron nitride framework and the optimized design of the thermal conductive network for its thermoresponsive polymeric composites[J]. Chemistry of Materials, 2019, 31(18):7686-7695.
|
[1] | TONG Fasong, WANG Shusen. Study on Uniformity of Microstructure and Anisotropy of Mechanical Properties of TC4 Titanium Alloy Sheets with Two Microstructures[J]. Development and Application of Materials, 2024, 39(4): 66-75. |
[2] | LI Haitao, QI Min, CHEN Dongmei, HUANG Sensen, WANG Qian, MA Yingjie, LEI Jiafeng. Study on Microstructure and Mechanical Properties of Laser Metal Deposition Near β Titanium Alloy[J]. Development and Application of Materials, 2024, 39(1): 30-37. |
[3] | WANG Yuan, DONG Jian, GUAN Yulong, ZHAO Baojie, ZHANG Haishen. Effect of Process on Microstructure and Mechanical Properties of TA5 Alloy Sheets[J]. Development and Application of Materials, 2022, 37(4): 61-64. |
[4] | TAO Huan, SONG Dejun, YANG Shengli, LI Chong, YU Yan, PAN Yifan. Effects of Fe Content on the Microstructures and Properties of Ti80 Alloy[J]. Development and Application of Materials, 2021, 36(6): 7-11. |
[5] | LI Longteng, WANG Yang, LIU Xibo, YANG Xuedong. High Temperature Creep Properties and Microstructure of Ti-Al-Zr-Mo-Nb-Sn-Si Cast Titanium Alloy[J]. Development and Application of Materials, 2021, 36(4): 9-13. |
[6] | DONG Xianbang, HE Chao, TANG Zhenguang, LING Rui. Investigation on Microstructure and Mechanical Properties of SUS304DQ Strip Steel[J]. Development and Application of Materials, 2020, 35(3): 6-9. |
[7] | GAO Fuyang, GAO Qi, YU Yan, JIANG Peng, LIU Zhiying, GUO Yufan. Research on Microstructure of Magnesium Alloy by Friction Stir Welding[J]. Development and Application of Materials, 2017, 32(1): 67-72. DOI: 10.19515/j.cnki.1003-1545.2017.01.013 |
[8] | CHEN Hao, GAO Fang, CHEN Da-zhong, GUO Qian-nan, GAO Yuan-yang. Effects of Rolling on Microstructures and Hardness of AZ31 Magnesium Alloy Rolled Sheets with Different Length-width Ratios[J]. Development and Application of Materials, 2014, 29(4): 53-58. DOI: 10.19515/j.cnki.1003-1545.2014.04.012 |
[9] | WANG Guo-yang, CHEN Pai-ming, WANG Yan-qiu. Room Temperature Hard Anodization of LC9 Aluminum Alloys and Microstructure of Anodic Film[J]. Development and Application of Materials, 2008, 23(6): 50-53. DOI: 10.19515/j.cnki.1003-1545.2008.06.014 |
[10] | RONG Ran-sheng, ZHANG Tian-hong, ZHANG Jun-xu. Microstructures of Martensite Layer in Fusion Zone of 10Ni5CrMoV Steel Joints Filled with A507 Electrode[J]. Development and Application of Materials, 2008, 23(5): 8-11. DOI: 10.19515/j.cnki.1003-1545.2008.05.002 |