SUN Yangzi, TONG Zhongzheng. Research Progress of Intrinsically Thermally Conductive Insulating Polymer Materials[J]. Development and Application of Materials, 2023, 38(1): 98-108.
Citation: SUN Yangzi, TONG Zhongzheng. Research Progress of Intrinsically Thermally Conductive Insulating Polymer Materials[J]. Development and Application of Materials, 2023, 38(1): 98-108.

Research Progress of Intrinsically Thermally Conductive Insulating Polymer Materials

More Information
  • Received Date: July 20, 2022
  • Available Online: March 10, 2023
  • Thermally conductive insulating materials play an important role in heat dissipation of components, high performance of integrated circuits, energy saving and environmental protection. Different from filler-type composite materials, intrinsic thermally conductive insulating material polymers are widely used in industrial fields due to their excellent electrical insulation, easy processability and good thermal conductivity to achieve rapid heat dissipation. However, most of the reviews focus on the development of filler-type composite thermally conductive insulating polymer materials, and there are few reviews on intrinsic thermally conductive insulating polymer materials. Therefore, this work aims at the development of intrinsically thermally conductive insulating polymer materials, summarizes the technical characteristics and research progress of intrinsically thermally conductive insulating polymer materials, and looks forward to the future development direction.
  • [1]
    穆静静,赵悦菊,滕济林,等.导热绝缘高分子材料研究与制备[J].电子世界, 2016(11):91.
    [2]
    LEWIS J S, PERRIER T, BARANI Z, et al. Thermal interface materials with graphene fillers:review of the state of the art and outlook for future applications[J]. Nanotechnology, 2021, 32(14):142003.
    [3]
    赵健康,赵鹏,陈铮铮,等.高压直流电缆绝缘材料研究进展评述[J].高电压技术, 2017, 43(11):3490-3503.
    [4]
    田恐虎,吴阳,盛绍顶,等.聚合物基绝缘导热复合材料中碳系填料的研究进展[J].复合材料学报, 2021, 38(4):1054-1065.
    [5]
    AHMED A, QAYOUM A. Investigation on the thermal degradation, moisture absorption characteristics and antibacterial behavior of natural insulation materials[J]. Materials for Renewable and Sustainable Energy, 2021, 10(1):4.
    [6]
    CHEN J H. Thermal insulation design for efficient and scalable solar water interfacial evaporation and purification[J]. Journal of Materials Science&Technology, 2021, 66:157-162.
    [7]
    HASEGAWA M, NAGAI S, SOKABE S, et al. Liq-uidcrystalline behavior and thermal conductivity of vinyl polymers containing benzoxazole side groups[J]. Polymer International, 2021, 70(6):812-822.
    [8]
    LIU H B. The flexible film of SCF/BN/PDMS composites with high thermal conductivity and electrical insulation[J]. Composites Communications, 2021, 23:100573.
    [9]
    AGARI Y, UEDA A, NAGAI S. Thermal conductivity of a polymer composite[J]. Journal of Applied Polymer Science, 1993, 49(9):1625-1634.
    [10]
    TSEKMES I A, KOCHETOV R, MORSHUIS P H F, et al. Modeling the thermal conductivity of polymeric composites based on experimental observations[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2014, 21(2):412-423.
    [11]
    XIAO M, DU B X. Review of high thermal conductivity polymer dielectrics for electrical insulation[J]. High Voltage, 2016, 1(1):34-42.
    [12]
    BAO Y, ZHAO X Y. The research applications of new heat insulation composite material in automobiles[J]. Heat Transfer-Asian Research, 2018, 47(1):103-110.
    [13]
    GONG X T, Feng S M. Eigen equation of super insulation materials[J]. Computational Condensed Matter, 2018, 14:133-136.
    [14]
    QIN L L, LI G H, HOU J, et al. Preparation, characterization, and thermal properties of poly (methyl-methacrylate)/boron nitride composites by bulk polymerization[J]. Polymer Composites, 2014, 36(9):1675-1684.
    [15]
    赵亚林,周正荣,马俊丽,等.环氧树脂基导热复合材料研究进展[J].高分子通报, 2020(12):18-23.
    [16]
    ZHOU W Y. Thermal and dielectric properties of the AlN particles reinforced linear low-density poly-ethylene composites[J]. Thermochimica Acta, 2011, 512(1-2):183-188.
    [17]
    费川,刘毅鑫.氧化铝导热增强聚酰亚胺薄膜的制备和表征[J].纤维复合材料, 2020, 37(3):27-29.
    [18]
    NAN B F, XIAO L, WU K, et al. Covalently introducing amino-functionalized nanodiamond into water-borne polyurethane via in situ polymerization:enha-nced thermal conductivity and excellent electrical insulation[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2020, 596:124752.
    [19]
    张凯,桂泰江,吴连锋,等.导热绝缘聚合物复合材料的研究进展[J].材料导报, 2021, 35(S1):571-575.
    [20]
    王克智.塑料助剂的开发及应用:抗静电剂[J].塑料科技, 1996, 24(4):42-51.
    [21]
    吴雄,陈轩恕,杨跃强,等.水性环氧树脂对聚合物水泥混凝土材料电气性能的影响[J].绝缘材料, 2018, 51(1):27-33.
    [22]
    林木松,郭坤,张晟,等.电缆绝缘聚合物材料的老化成因机理及其研究现状[J].高分子材料科学与工程, 2017, 33(12):149-155.
    [23]
    HARADA M, OCHI M, TOBITA M, et al. Thermal-conductivity properties of liquid-crystalline epoxy resin cured under a magnetic field[J]. Journal of Polymer Science Part B:Polymer Physics, 2003, 41(14):1739-1743.
    [24]
    BENICEWICZ B C, SMITH M E, EARLS J D, et al. Magnetic field orientation of liquid crystalline epoxy thermosets[J]. Macromolecules, 1998, 31(15):4730-4738.
    [25]
    SHIOTA A, OBER C K. Orientation of liquid crystalline epoxides under ac electric fields[J]. Macromolecules, 1997, 30(15):4278-4287.
    [26]
    SONG S H, KATAGI H, TAKEZAWA Y, et al. Study on high thermal conductivity of mesogenic epoxy resin with spherulite structure[J]. Polymer, 2012, 53(20):4489-4492.
    [27]
    YANG X T. High-efficiency improvement of thermal conductivities for epoxy composites from synthesized liquid crystal epoxy followed by doping BN fillers[J]. Composites Part B:Engineering, 2020, 185:107784.
    [28]
    TANG N, TANAKA S, TAKEZAWA Y, et al. Highly anisotropic thermal conductivity of mesogenic epoxy resin film through orientation control[J]. Journal of Applied Polymer Science, 2021, 138(47):51396.
    [29]
    HAMMERSCHMIDT A, GEIBEL K, STROHMER F. In situ photopolymerized, oriented liquid-crystalline diacrylates with high thermal conductivities[J]. Advanced Materials, 1993, 5(2):107-109.
    [30]
    KIM D G, KIM Y H, SHIN T J, et al. Highly anisotropic thermal conductivity of discotic nematic liquid crystalline films with homeotropic alignment[J]. Che-mical Communications, 2017, 53(58):8227-8230.
    [31]
    CHOY C L, CHEN F C, LUK W H. Thermal conductivity of oriented crystalline polymers[J]. Journal of Polymer Science:Polymer Physics Edition, 1980, 18(6):1187-1207.
    [32]
    CHOY C L, FEI Y, XI T G. Thermal conductivity of gel-spun polyethylene fibers[J]. Journal of Polymer Science Part B:Polymer Physics, 1993, 31(3):365-370.
    [33]
    GUPTA S, SCHIEBER J D, VENERUS D C. Anisotropic thermal conduction in polymer melts in uniaxial elongation flows[J]. Journal of Rheology, 2013, 57(2):427-439.
    [34]
    SHEN S, HENRY A, TONG J, et al. Polyethylene nanofibres with very high thermal conductivities[J]. Nature Nanotechnology, 2010, 5(4):251-255.
    [35]
    FUJISHIRO H, IKEBE M, KASHIMA T, et al. Thermal conductivity and diffusivity of high-strength polymer fibers[J]. Japanese Journal of Applied Physics, 1997, 36(Part 1, No. 9A):5633-5637.
    [36]
    WANG X J, HO V, SEGALMAN R, et al. Thermal conductivity of high-modulus polymer fibers[J]. Macromolecules, 2013, 46(12):4937-4943.
    [37]
    LIANG Y, WENG L, ZHANG W L, et al. Block polypropylene/styrene-ethylene-butylene-styrene tri-block copolymer blends for recyclable HVDC cable insulation[J]. Materials Research Express, 2020, 7(8):085301.
    [38]
    GREEN C D, VAUGHAN A S, STEVENS G C, et al. Thermoplastic cable insulation comprising a blend of isotactic polypropylene and a propylene-ethylene copolymer[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22(2):639-648.
    [39]
    CHIEN H C, PENG W T, CHIU T H, et al. Heat transfer of semicrystalline nylon nanofibers[J]. ACS Nano, 2020, 14(3):2939-2946.
    [40]
    XUE J J, WU T, DAI Y Q, et al. Electrospinning and electrospun nanofibers:methods, materials, and applications[J]. Chemical Reviews, 2019, 119(8):5298-5415.
    [41]
    KISHAN A P, COSGRIFF-HERNANDEZ E M. Re-cent advancements in electrospinning design for tissue engineering applications:a review[J]. Journal of Biomedical Materials Research Part A, 2017, 105(10):2892-2905.
    [42]
    CHEN L, WANG S, YU Q Q, et al. A comprehensive review of electrospinning block copolymers[J]. Soft Matter, 2019, 15(12):2490-2510.
    [43]
    GHAFFARI-MOSANENZADEH S, AGHABABAEI TAFRESHI O, DAMMEN-BROWER E, et al. A review on high thermally conductive polymeric compo-sites[J]. Polymer Composites, 2022, 43(2):692-711.
    [44]
    GIBSON A G, GREIG D, SAHOTA M, et al. Therm-al conductivity of ultrahigh-modulus polyethylene[J]. Journal of Polymer Science:Polymer Letters Edition, 1977, 15(4):183-192.
    [45]
    MA J, ZHANG Q, MAYO A, et al. Thermal conductivity of electrospun polyethylene nanofibers[J]. Nanoscale, 2015, 7(40):16899-16908.
    [46]
    ZHONG Z X, WINGERT M C, STRZALKA J, et al. Structure-induced enhancement of thermal conductivities in electrospun polymer nanofibers[J]. Nanoscale, 2014, 6(14):8283-8291.
    [47]
    LU C H, CHIANG S W, DU H D, et al. Thermal conductivity of electrospinning chain-aligned polyethylene oxide (PEO)[J]. Polymer, 2017, 115:52-59.
    [48]
    DODD S J, SUTTON S J, CHAMPION J V, et al. Influence of morphology on electrical treeing in polyethylene blends[J]. IEE Proceedings-Science, Measurement and Technology, 2003, 150(2):58-64.
    [49]
    ZHANG Y H, PARK M, PARK S J. Implication of thermally conductive nanodiamond-interspersed gr-aphite nanoplatelet hybrids in thermoset composites with superior thermal management capability[J]. Scientific Reports, 2019, 9:2893.
    [50]
    XU X F, CHEN J, ZHOU J, et al. Thermal conductivity of polymers and their nanocomposites[J]. Advanced Materials (Deerfield Beach, Fla), 2018, 30(17):e1705544.
    [51]
    FENG C P, CHEN L B, TIAN G L, et al. Multifunctional thermal management materials with excellent heat dissipation and generation capability for future electronics[J]. ACS Applied Materials&Interfaces, 2019, 11(20):18739-18745.
    [52]
    LIU Z D, CHEN Y P, LI Y F, et al. Graphene foam-embedded epoxy composites with significant thermal conductivity enhancement[J]. Nanoscale, 2019, 11(38):17600-17606.
    [53]
    JIANG F, CUI S Q, RUNGNIM C, et al. Control of a dual-cross-linked boron nitride framework and the optimized design of the thermal conductive network for its thermoresponsive polymeric composites[J]. Chemistry of Materials, 2019, 31(18):7686-7695.
  • Related Articles

    [1]TONG Fasong, WANG Shusen. Study on Uniformity of Microstructure and Anisotropy of Mechanical Properties of TC4 Titanium Alloy Sheets with Two Microstructures[J]. Development and Application of Materials, 2024, 39(4): 66-75.
    [2]LI Haitao, QI Min, CHEN Dongmei, HUANG Sensen, WANG Qian, MA Yingjie, LEI Jiafeng. Study on Microstructure and Mechanical Properties of Laser Metal Deposition Near β Titanium Alloy[J]. Development and Application of Materials, 2024, 39(1): 30-37.
    [3]WANG Yuan, DONG Jian, GUAN Yulong, ZHAO Baojie, ZHANG Haishen. Effect of Process on Microstructure and Mechanical Properties of TA5 Alloy Sheets[J]. Development and Application of Materials, 2022, 37(4): 61-64.
    [4]TAO Huan, SONG Dejun, YANG Shengli, LI Chong, YU Yan, PAN Yifan. Effects of Fe Content on the Microstructures and Properties of Ti80 Alloy[J]. Development and Application of Materials, 2021, 36(6): 7-11.
    [5]LI Longteng, WANG Yang, LIU Xibo, YANG Xuedong. High Temperature Creep Properties and Microstructure of Ti-Al-Zr-Mo-Nb-Sn-Si Cast Titanium Alloy[J]. Development and Application of Materials, 2021, 36(4): 9-13.
    [6]DONG Xianbang, HE Chao, TANG Zhenguang, LING Rui. Investigation on Microstructure and Mechanical Properties of SUS304DQ Strip Steel[J]. Development and Application of Materials, 2020, 35(3): 6-9.
    [7]GAO Fuyang, GAO Qi, YU Yan, JIANG Peng, LIU Zhiying, GUO Yufan. Research on Microstructure of Magnesium Alloy by Friction Stir Welding[J]. Development and Application of Materials, 2017, 32(1): 67-72. DOI: 10.19515/j.cnki.1003-1545.2017.01.013
    [8]CHEN Hao, GAO Fang, CHEN Da-zhong, GUO Qian-nan, GAO Yuan-yang. Effects of Rolling on Microstructures and Hardness of AZ31 Magnesium Alloy Rolled Sheets with Different Length-width Ratios[J]. Development and Application of Materials, 2014, 29(4): 53-58. DOI: 10.19515/j.cnki.1003-1545.2014.04.012
    [9]WANG Guo-yang, CHEN Pai-ming, WANG Yan-qiu. Room Temperature Hard Anodization of LC9 Aluminum Alloys and Microstructure of Anodic Film[J]. Development and Application of Materials, 2008, 23(6): 50-53. DOI: 10.19515/j.cnki.1003-1545.2008.06.014
    [10]RONG Ran-sheng, ZHANG Tian-hong, ZHANG Jun-xu. Microstructures of Martensite Layer in Fusion Zone of 10Ni5CrMoV Steel Joints Filled with A507 Electrode[J]. Development and Application of Materials, 2008, 23(5): 8-11. DOI: 10.19515/j.cnki.1003-1545.2008.05.002

Catalog

    Article Metrics

    Article views (164) PDF downloads (55) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return