TONG Fasong, WANG Shusen. Study on Uniformity of Microstructure and Anisotropy of Mechanical Properties of TC4 Titanium Alloy Sheets with Two Microstructures[J]. Development and Application of Materials, 2024, 39(4): 66-75.
Citation: TONG Fasong, WANG Shusen. Study on Uniformity of Microstructure and Anisotropy of Mechanical Properties of TC4 Titanium Alloy Sheets with Two Microstructures[J]. Development and Application of Materials, 2024, 39(4): 66-75.

Study on Uniformity of Microstructure and Anisotropy of Mechanical Properties of TC4 Titanium Alloy Sheets with Two Microstructures

More Information
  • Received Date: April 06, 2024
  • Available Online: September 11, 2024
  • The effects of rolling processes on the microstructure and mechanical properties of TC4 titanium alloy sheet are studied. The results indicate that the lamellar microstructure consisting of lamellar α and residual β phases is obtained by β phase field deformation, and that the equiaxed microstructure consisting of equiaxed α, lamellar α and residual β phases is obtained by α+β phase field deformation. The mechanical test results show that the match between the strength and plasticity of TC4 sheet with equiaxed structure is better than that with lamellar microstructure, while the impact and fracture toughnesses of TC4 sheet with lamellar structure are better. The uniformity of microstructure and mechanical properties of TC4 sheets with the two microstructures is further analyzed. The results indicate that the microstructure and mechanical properties along the normal direction(ND) of two types of TC4 sheets show higher uniformity, and that the anisotropy of tensile strength and fracture toughness in the sheets along the rolling direction (RD) exists. The texture of <0001>α//TD direction in the TC4 sheet would increase the slip resistance of dislocations in the transverse direction (TD), resulting in higher strength in the TD than in the RD. There is obvious flowline microstructure along the RD in the TC4 sheet, which increases the resistance of crack transgranular propagation, resulting in higher impact and fracture toughnesses in the TD-RD direction than those in the RD-TD direction.
  • [1]
    金和喜,魏克湘,李建明,等.航空用钛合金研究进展[J].中国有色金属学报, 2015, 25(2):280-292.
    [2]
    李梁,孙健科,孟祥军.钛合金的应用现状及发展前景[J].钛工业进展, 2004, 21(5):19-24.
    [3]
    付艳艳,宋月清,惠松骁,等.航空用钛合金的研究与应用进展[J].稀有金属, 2006, 30(6):850-856.
    [4]
    杨海瑛,陈军,赵永庆.热处理对TC4-DT钛合金组织性能的影响[J].材料开发与应用, 2009, 24(2):13-16.
    [5]
    杨锐,马英杰,雷家峰,等.高强韧钛合金组成相成分和形态的精细调控[J].金属学报, 2021, 57(11):1455-1470.
    [6]
    刘莹,曲周德,王本贤.钛合金TC4的研究开发与应用[J].兵器材料科学与工程, 2005, 28(1):47-50.
    [7]
    李昌,任伟宁,杨健,等. TC4钛合金β热处理的显微组织演变[J].热加工工艺, 2024, 53(10):151-154.
    [8]
    王伟,周山琦,宫鹏辉,等.退火温度对TC4钛合金热轧板材的显微组织、织构和力学性能影响[J].材料研究学报, 2023, 37(1):70-80.
    [9]
    冯秋元,张磊,庞洪,等.低成本TC4钛合金板材的组织和性能[J].金属热处理, 2016, 41(6):85-88.
    [10]
    王牛俊,罗乾伟. TC4钛合金板不同加工条件下组织对比研究[J].材料开发与应用, 2017, 32(4):95-100.
    [11]
    苏化冰,尹林,江红军,等.锻造和热处理工艺对TC4钛合金显微组织和冲击韧度的影响[J].热处理, 2023, 38(4):36-39.
    [12]
    高飞,雷挺,苗阳,等.热处理对TC4钛合金板材韧性的影响[J].金属世界, 2022(3):36-38.
    [13]
    TCHORZEWSKI R M, HUTCHINSON W B. Aniso-tropy of fracture toughness in textured titanium-6Al-4V alloy[J]. Metallurgical Transactions A, 1978, 9(8):1113-1124.
    [14]
    REN J Q, QI W, ZHANG B B, et al. Charpy impact anisotropy and the associated mechanisms in a hot-rolled Ti-6Al-3Nb-2Zr-1Mo alloy plate[J]. Materials Science and Engineering:A, 2022, 831:142187.
    [15]
    BACHE M R, EVANS W J. Impact of texture on mechanical properties in an advanced titanium alloy[J]. Materials Science and Engineering:A, 2001, 319-321:409-414.
    [16]
    杨杰,黄森森,尹慧,等.航空用TC21钛合金变截面模锻件的显微组织和力学性能不均匀性分析[J].金属学报, 2024, 60(3):333-347.
    [17]
    WENG H B, HUANG S S, YANG J, et al. Mechanical properties anisotropy of Ti-6Al-4V alloy fabricated by β forging[J]. Transactions of Nonferrous Metals Society of China, 2023, 33(11):3348-3363.
    [18]
    陈松,黄森森,马英杰,等. α+β钛合金旋转弯曲疲劳性能各向异性研究[J].稀有金属材料与工程, 2024, 53(2):435-448.
    [19]
    蔺海,杨冠军,毛小南,等.轧制方式和热处理工艺对TC4-DT钛合金板材各向力学性能的影响[J].机械工程材料, 2012, 36(2):52-54.
    [20]
    同晓乐,张明玉,于成泉,等.不同轧制厚度TC4钛合金板材的组织与性能[J].锻压技术, 2022, 47(6):153-159.
    [21]
    白新房,焦磊,王松茂,等. TC4钛合金宽幅厚板材组织结构、织构及疲劳性能研究[J].热加工工艺, 2018, 47(24):25-30.
    [22]
    于宇,李嘉琪.国内外钛合金在海洋工程中的应用现状与展望[J].材料开发与应用, 2018, 33(3):111-116.
    [23]
    程德彬.船用钛合金与航空钛合金的使用性能差异[J].材料开发与应用, 2012, 27(3):60-63.
    [24]
    YANG J, HUANG S S, WANG Q, et al. The anisotropy of fracture toughness of an α+β titanium alloy by β forging[J]. Journal of Materials Research and Technology, 2023, 27:5840-5853.
    [25]
    SHI X H, ZENG W D, ZHAO Q Y. The effects of lamellar features on the fracture toughness of Ti-17 titanium alloy[J]. Materials Science and Engineering:A, 2015, 636:543-550.
  • Related Articles

    [1]XUE Gang. Analysis on Fracture during Uniaxial Tensile Test with Round Bar Sample based on I1 Fracture Criterion[J]. Development and Application of Materials, 2023, 38(6): 100-110.
    [2]HE Wei, MA Hongzheng, MIAO Zhuang, BAI Xinfang. Analysis on Fracture Cause for Titanium Alloy Ti6Al4V Screw[J]. Development and Application of Materials, 2022, 37(6): 124-128.
    [3]ZHANG Yajun. Some Problems Appeared in Fatigue and Fracture Test of Materials( 1)[J]. Development and Application of Materials, 2017, 32(1): 1-5. DOI: 10.19515/j.cnki.1003-1545.2017.01.001
    [4]YANG Xiao, ZHANG Mingsheng. Analysis on Fracture of Grade 8.8 Bolts[J]. Development and Application of Materials, 2016, 31(6): 17-21. DOI: 10.19515/j.cnki.1003-1545.2016.06.004
    [5]GAO Zhenpeng, GONG Xuhui, XUE Gang. Review of Fracture Criterion of Metal Material[J]. Development and Application of Materials, 2016, 31(1): 17-21. DOI: 10.19515/j.cnki.1003-1545.2016.01.004
    [6]XUE Gang. Fracture Criterion Hypothesis Based on First Stress Invariant[J]. Development and Application of Materials, 2014, 29(6): 1-5. DOI: 10.19515/j.cnki.1003-1545.2014.06.001
    [7]GAO Ling-qing, LI Hui, ZHU Jin-hua. Study on Brittle Fracture of Medium Manganese Steel[J]. Development and Application of Materials, 2013, 28(5): 1-5. DOI: 10.19515/j.cnki.1003-1545.2013.05.001
    [8]ZHANG Ya-jun, LÜ Yi-fan. Study on Fracture Toughness Test of TC4ELI Alloy[J]. Development and Application of Materials, 2012, 27(2): 14-17. DOI: 10.19515/j.cnki.1003-1545.2012.02.004
    [9]REN Wei-xia, WANG Pei. Analysis on the Fracture of Connecting Rod Bolt in Second Assembling[J]. Development and Application of Materials, 2009, 24(6): 55-58. DOI: 10.19515/j.cnki.1003-1545.2009.06.014
    [10]HUANG Li-guo, ZHANG Wei-qiang. Effect of Direct Current Electric Field on the Microstructure of Al-Si Eutectic Alloy[J]. Development and Application of Materials, 2005, 20(3): 8-10. DOI: 10.19515/j.cnki.1003-1545.2005.03.003
  • Cited by

    Periodical cited type(4)

    1. 王树林,张帆,徐宁,樊永欣,王志强,王金朝. 精准调频型动力吸振器线路应用效果分析. 山西建筑. 2024(02): 125-127+132 .
    2. 周立波. 城市轨道交通引起的地面环境振动影响预测研究. 山西建筑. 2024(18): 125-127+177 .
    3. 张帆,徐宁,王开祥,何林浩,高晓刚. 近海环境高架段组合道床系统隔振性能跟踪分析. 装备环境工程. 2023(08): 122-127 .
    4. 张斌. 合肥市轨道交通1号线高性能减振道床系统减振效果研究. 四川水泥. 2022(04): 206-208 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (109) PDF downloads (38) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return