LIU Zhongye, HE Zhiyang. Study on Simulated Oxidation of WC Coating and its Effect on Aging Performance[J]. Development and Application of Materials, 2023, 38(3): 37-42,58.
Citation: LIU Zhongye, HE Zhiyang. Study on Simulated Oxidation of WC Coating and its Effect on Aging Performance[J]. Development and Application of Materials, 2023, 38(3): 37-42,58.

Study on Simulated Oxidation of WC Coating and its Effect on Aging Performance

More Information
  • Received Date: January 16, 2023
  • Available Online: July 09, 2023
  • The WC-17Co coating sprayed on the surface of key parts of a set of large domestic equipment becomes blue and purple locally when placed in the plant for a period of time. To study the reason for that and evaluate its impact on the coating service performance, a batch of WC-17Co coating samples are prepared. An environmental test box is used to adjust humidity and temperature to simulate the field environment for accelerated oxidation tests and in-situ observation. The adhesion, wear-resistance, and corrosion resistance are tested by pull-out method, reciprocating friction method, and electrochemical measurements. It is found that the WC-17Co coating prepared with the same parameters successfully reproduced the field corrosion appearance under the simulated conditions. By comparing the properties of WC-17Co coating before and after the corrosion, it is found that the adhesion strengths of the coating before and after the corrosion are higher than 60 MPa. The wear volume of the coating before and after the corrosion changes little. The corrosion only occurs on the surface of the coating, and the interior of the coating and substrate are not damaged. It can be concluded that the surface discoloration of the coating is due to the high temperature and humidity of the local summer environment, resulting in Co oxidation of the coating surface. The adhesion and wear-resistance of the oxidized coating are not significantly reduced. Therefore, the surface oxidation of the field coating will not affect its service performance.
  • [1]
    李祉宏. 超音速激光沉积钴基合金及其复合涂层的研究[D].杭州:浙江工业大学, 2016.
    [2]
    于静, 刘延川, 于洪飞. 超音频感应熔覆钴基涂层的组织与摩擦磨损性能[J]. 材料保护, 2021, 54(9): 1-6.
    [3]
    朱朝刚, 张建新, 燕翙江, 等. 等离子喷涂T800钴基合金涂层的研究[J]. 河北工业大学学报, 2017, 46(1): 77-82.
    [4]
    CORMIER J. Ni- and Co-based superalloys and their coatings[J]. Metals, 2018, 8(12): 1055.
    [5]
    丁舜, 田国锐, 丁林. 激光熔覆陶瓷增强Co基合金涂层摩擦磨损性能研究的现状[J]. 热处理, 2021, 36(6): 1-5.
    [6]
    江国健, 庄汉锐, 李文兰, 等. 场激活燃烧合成碳化钨和碳化钨钴反应机理[J]. 硅酸盐学报, 2003, 31(12): 1155-1160.
    [7]
    李明喜, 顾凤麟, 李殿凯. 碳化硅增强钴基合金等离子喷焊层组织与力学性能[J]. 焊接学报, 2015, 36(12): 35-38.
    [8]
    马俊峰, 王骏, 唐立平, 等. 钛合金表面激光熔覆碳化硼/钴基复合涂层的温度场模拟及试验研究[J]. 应用激光, 2021,41(4): 732-737.
    [9]
    BOLELLI G, DOSTA S, LUSVARGHI L, et al. Bui-lding up WC-Co coatings by cold spray: a finite element simulation[J]. Surface and Coatings Technology, 2019, 374: 674-689.
    [10]
    CHEN C L. Study of W-Co ODS coating on stainless steels by mechanical alloying[J]. Surface and Coatings Technology, 2018, 350: 954-961.
    [11]
    GHOSH G, SIDPARA A, BANDYOPADHYAY P P. Fabrication of mechanically durable slippery surface on HVOF sprayed WC-Co coating[J]. Surface and Coatings Technology, 2020, 394: 125886.
    [12]
    陈枭, 白小波, 王洪涛, 等. 超音速火焰喷涂多尺度WC-17Co粉末制备的金属陶瓷涂层的组织结构与性能[J]. 材料导报, 2019, 33(4): 684-688.
    [13]
    刘延宽, 杨斯楠, 王志平. WC-17Co粉末密度对涂层力学性能及残余应力的影响[J]. 稀有金属材料与工程, 2022,51(4): 1188-1194.
    [14]
    王超, 牛少鹏, 黄益聪, 等. 超音速火焰喷涂WC-17Co涂层氧化行为研究[J]. 材料研究与应用, 2022, 16(3): 418-424.
    [15]
    鲁宏, 戴魏魏, 蒋立鹤, 等. 超音速火焰喷涂WC基金属陶瓷涂层的长期腐蚀行为[J]. 热加工工艺, 2022, 51(24):72-77.
    [16]
    梅林波, 安春香, 叶兴柱. 超音速火焰喷涂应用于汽轮机叶片防水蚀研究[J]. 热力透平,2022,51(3): 214-218.
    [17]
    夏事成, 胡瑞章, 李云, 等. 利用超音速火焰喷涂制FeSiBCr涂层的工艺研究[J]. 佳木斯大学学报(自然科学版), 2022, 40(5): 103-106.
    [18]
    CHEND Y. Suspension HVOF sprayed ytterbium disilicate environmental barrier coatings[J].Journal of Thermal Spray Technology, 2022, 31(3): 429-435.
    [19]
    MITTAL G, PAUL S. Suspension and solution prec-ursor plasma and HVOF spray: areview[J].Journal of Thermal Spray Technology, 2022, 31(5): 1443-1475.
    [20]
    郭华锋, 朱聪聪, 赵恩兰, 等. 基于正交试验的超音速火焰喷涂WC-12Co涂层抗冲蚀性能研究[J]. 排灌机械工程学报, 2022, 40(4): 419-426.
    [21]
    申晓凤, 黄娇, 李志康, 等. 超音速火焰喷涂制备Cr涂层及其高温氧化性能[J]. 表面技术,2023, 52(2): 412-421.
    [22]
    FERNÁNDEZ J, GAONA M, GUILEMANY J M. Ef-fect of heat treatments on HVOF hydroxyapatite coatings[J]. Journal of Thermal Spray Technology, 2007, 16(2): 220-228.
    [23]
    LIM H, CHRISTOFIDESP D. Modeling and control of high-velocity oxygen-fuel (HVOF) thermal spray: atutorial review[J]. Journal of Thermal Spray Technology, 2009, 18(5): 753-768.
    [24]
    SAPATE S G, TANGSELWAR N, PAUL S N, et al. Effect of coating thickness on the slurry erosion resistance of HVOF-sprayed WC-10Co-4CrCoatings[J].Journal of Thermal Spray Technology, 2021, 30(5): 1365-1379.

Catalog

    Article Metrics

    Article views (144) PDF downloads (29) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return