Citation: | LIU Zhongye, HE Zhiyang. Study on Simulated Oxidation of WC Coating and its Effect on Aging Performance[J]. Development and Application of Materials, 2023, 38(3): 37-42,58. |
[1] |
李祉宏. 超音速激光沉积钴基合金及其复合涂层的研究[D].杭州:浙江工业大学, 2016.
|
[2] |
于静, 刘延川, 于洪飞. 超音频感应熔覆钴基涂层的组织与摩擦磨损性能[J]. 材料保护, 2021, 54(9): 1-6.
|
[3] |
朱朝刚, 张建新, 燕翙江, 等. 等离子喷涂T800钴基合金涂层的研究[J]. 河北工业大学学报, 2017, 46(1): 77-82.
|
[4] |
CORMIER J. Ni- and Co-based superalloys and their coatings[J]. Metals, 2018, 8(12): 1055.
|
[5] |
丁舜, 田国锐, 丁林. 激光熔覆陶瓷增强Co基合金涂层摩擦磨损性能研究的现状[J]. 热处理, 2021, 36(6): 1-5.
|
[6] |
江国健, 庄汉锐, 李文兰, 等. 场激活燃烧合成碳化钨和碳化钨钴反应机理[J]. 硅酸盐学报, 2003, 31(12): 1155-1160.
|
[7] |
李明喜, 顾凤麟, 李殿凯. 碳化硅增强钴基合金等离子喷焊层组织与力学性能[J]. 焊接学报, 2015, 36(12): 35-38.
|
[8] |
马俊峰, 王骏, 唐立平, 等. 钛合金表面激光熔覆碳化硼/钴基复合涂层的温度场模拟及试验研究[J]. 应用激光, 2021,41(4): 732-737.
|
[9] |
BOLELLI G, DOSTA S, LUSVARGHI L, et al. Bui-lding up WC-Co coatings by cold spray: a finite element simulation[J]. Surface and Coatings Technology, 2019, 374: 674-689.
|
[10] |
CHEN C L. Study of W-Co ODS coating on stainless steels by mechanical alloying[J]. Surface and Coatings Technology, 2018, 350: 954-961.
|
[11] |
GHOSH G, SIDPARA A, BANDYOPADHYAY P P. Fabrication of mechanically durable slippery surface on HVOF sprayed WC-Co coating[J]. Surface and Coatings Technology, 2020, 394: 125886.
|
[12] |
陈枭, 白小波, 王洪涛, 等. 超音速火焰喷涂多尺度WC-17Co粉末制备的金属陶瓷涂层的组织结构与性能[J]. 材料导报, 2019, 33(4): 684-688.
|
[13] |
刘延宽, 杨斯楠, 王志平. WC-17Co粉末密度对涂层力学性能及残余应力的影响[J]. 稀有金属材料与工程, 2022,51(4): 1188-1194.
|
[14] |
王超, 牛少鹏, 黄益聪, 等. 超音速火焰喷涂WC-17Co涂层氧化行为研究[J]. 材料研究与应用, 2022, 16(3): 418-424.
|
[15] |
鲁宏, 戴魏魏, 蒋立鹤, 等. 超音速火焰喷涂WC基金属陶瓷涂层的长期腐蚀行为[J]. 热加工工艺, 2022, 51(24):72-77.
|
[16] |
梅林波, 安春香, 叶兴柱. 超音速火焰喷涂应用于汽轮机叶片防水蚀研究[J]. 热力透平,2022,51(3): 214-218.
|
[17] |
夏事成, 胡瑞章, 李云, 等. 利用超音速火焰喷涂制FeSiBCr涂层的工艺研究[J]. 佳木斯大学学报(自然科学版), 2022, 40(5): 103-106.
|
[18] |
CHEND Y. Suspension HVOF sprayed ytterbium disilicate environmental barrier coatings[J].Journal of Thermal Spray Technology, 2022, 31(3): 429-435.
|
[19] |
MITTAL G, PAUL S. Suspension and solution prec-ursor plasma and HVOF spray: areview[J].Journal of Thermal Spray Technology, 2022, 31(5): 1443-1475.
|
[20] |
郭华锋, 朱聪聪, 赵恩兰, 等. 基于正交试验的超音速火焰喷涂WC-12Co涂层抗冲蚀性能研究[J]. 排灌机械工程学报, 2022, 40(4): 419-426.
|
[21] |
申晓凤, 黄娇, 李志康, 等. 超音速火焰喷涂制备Cr涂层及其高温氧化性能[J]. 表面技术,2023, 52(2): 412-421.
|
[22] |
FERNÁNDEZ J, GAONA M, GUILEMANY J M. Ef-fect of heat treatments on HVOF hydroxyapatite coatings[J]. Journal of Thermal Spray Technology, 2007, 16(2): 220-228.
|
[23] |
LIM H, CHRISTOFIDESP D. Modeling and control of high-velocity oxygen-fuel (HVOF) thermal spray: atutorial review[J]. Journal of Thermal Spray Technology, 2009, 18(5): 753-768.
|
[24] |
SAPATE S G, TANGSELWAR N, PAUL S N, et al. Effect of coating thickness on the slurry erosion resistance of HVOF-sprayed WC-10Co-4CrCoatings[J].Journal of Thermal Spray Technology, 2021, 30(5): 1365-1379.
|