DONG Hongna, LI Guijie. Thermodynamic Properties of Ni-Ti-Si Ternary Alloy and Calculation of Amorphous Formation Range[J]. Development and Application of Materials, 2024, 39(3): 10-19.
Citation: DONG Hongna, LI Guijie. Thermodynamic Properties of Ni-Ti-Si Ternary Alloy and Calculation of Amorphous Formation Range[J]. Development and Application of Materials, 2024, 39(3): 10-19.

Thermodynamic Properties of Ni-Ti-Si Ternary Alloy and Calculation of Amorphous Formation Range

More Information
  • Received Date: September 03, 2023
  • Available Online: July 22, 2024
  • The formation enthalpy ΔH, excess entropy SE, excess Gibbs free energy GE, and activity of each constituent element of Ni-Ti-Si ternary alloy at 1 273 K is calculated based on Chou model, and the formation enthalpies of 8 intermetallic compounds of the Ni-Ti-Si ternary alloy are calculated. The amorphous formation range of Ni-Ti-Si ternary alloy at 1 273 K is predicted based on Toop model. The calculated results show that when xNi=0.39, xTi=0.25, and xSi= 0.36, the Ni-Ti-Si ternary alloy has the minimum ΔH, SE and GE, and ΔHmin=-56.25 kJ/mol, SEmin=-6.38 J/mol, and GEmin=-48.14 kJ/mol. Of the 8 intermetallic compounds, the ΔH of the intermetallic compound τ1 is the most negative, indicating that its phase stability is the highest. It is the first to precipitate, τ2, τ6, τ7 and τ8 are the next, and τ3, τ4 and τ5 are the last. Ni-Ti-Si ternary system has a very large negative deviation between the activity values of each constituent element and the ideal melt. Amorphous can be formed in the Ni-Ti-Si ternary alloy, and the amorphous formation range is very large, mainly in the composition range of xTi=20%~80% and xNi=15%~90%. The calculated range of intermetallic compounds and amorphous formation range of Ni-Ti-Si ternary alloy are in good agreement with the experimental results.
  • [1]
    李珑,郭亚飞,张思思,等.高原富锂水盐体系相平衡及热力学性质研究进展[J].科技导报, 2017, 35(12):55-61.
    [2]
    FRASER D G. Activities of trace elements in silicate melts[J]. Geochimica et Cosmochimica Acta, 1975, 39(11):1525-1530.
    [3]
    KOHLER F. Zur berechnung der thermodynamischen daten eines tern ären systems aus den zugehörigen binären systemen[J]. Monatshefte Für Chemie Und Verwandte Teile Anderer Wissenschaften, 1960, 91(4):738-740.
    [4]
    周国治.新一代的溶液几何模型及其今后的展望[J].金属学报, 1997, 33(2):126-132.
    [5]
    YUAN Y, HUANG Y, WEI Q. Effects of Zr addition on thermodynamic and kinetic properties of liquid Mg-6Zn-xZr alloys[J]. Metals, 2019, 9(5):607.
    [6]
    OUYANG Y F, ZHONG X P, DU Y, et al. Forma-tion enthalpies of Fe-Al-RE ternary alloys calculated with a geometric model and Miedema's theory[J]. Journal of Alloys and Compounds, 2006, 416(1-2):148-154.
    [7]
    TAKASUGI T, NAGASHIMA M, IZUMI O. Streng-thening and ductilization of Ni3Si by the addition of Ti elements[J]. Acta Metallurgica et Materialia, 1990, 38(5):747-755.
    [8]
    TOKUNAGA T, HASHIMA K, OHTANI H, et al. Thermodynamic analysis of the Ni-Si-Ti system using thermochemical properties determined from ab initio calculations[J]. MATERIALS TRANSACTIONS, 2004, 45(5):1507-1514.
    [9]
    DU Y, HE C, SCHUSTER J, et al. Thermodynamic description of the Ni-Si-Ti ternary system[J]. International Journal of Materials Research, 2006, 97:543-555.
    [10]
    HU B, YUAN X M, DU Y, et al. Thermodynamic reassessment of the Ni-Si-Ti system using a four-sublattice model for ordered/disordered fcc phases supported by first-principles calculations[J]. Journal of Alloys and Compounds, 2017, 693:344-356.
    [11]
    黄浩,张勇.高熵合金与非晶合金柔性材料[J].工程科学学报, 2021, 43(1):119-128.
    [12]
    SUN S P, YI D Q, LIU H Q, et al. Calculation of glass forming ranges in Al-Ni-RE (Ce, La, Y) ternary alloys and their sub-binaries based on Miede-ma's model[J]. Journal of Alloys and Compounds, 2010, 506(1):377-387.
    [13]
    WANG Y Y, LI J H, WANG T L, et al. Amorphous phase formation in the Ni-Ti-Ta system studied by thermodynamic calculation and ion beam mixing[J]. Intermetallics, 2014, 53:102-106.
    [14]
    CUI K Y, DENG Y L, ZHANG C, et al. Prediction of glass forming ranges in Ti-Ni-Zr, Ti-Cu-Zr and Ti-Cu-Hf systems based on miedema and atomic parameter models[J]. Materials Transactions, 2020, 61(7):1200-1204.
    [15]
    YUAN R, YU Z G, LENG H Y, et al. Thermodynamic evaluation and experimental verification of the glass forming ability of Cu-Zr-based alloys[J]. Journal of Non-Crystalline Solids, 2021, 564:120835.
    [16]
    LU B C, WANG Y L, XU J. Revisiting the glass-forming ability of Ti-Ni-Si ternary alloys[J]. Journal of Alloys and Compounds, 2009, 475(1-2):157-164.
    [17]
    ZHANG Y Q, JIANG S Y, LIANG Y L, et al. Simulation of dynamic recrystallization of NiTi shape memory alloy during hot compression deformation based on cellular automaton[J]. Computational Materials Science, 2013, 71:124-134.
    [18]
    INOUE A. Bulk Amorphous Alloys:preparation and Fundamental Characteristics[J]. TTP, 1998.
    [19]
    WASTIN F, SUMIYAMA K, HIHARA T, et al. Influence of the synthesis mode on electronic properties of Ce-Ni amorphous alloys[J]. Physica B:Conden-sed Matter, 1993, 186-188:563-565.
  • Related Articles

    [1]WANG Zuhua, YANG Chaofei, NIU Jicheng, WANG Renfu. Effect of Two-phase Region Heat Treatment on Cryogenic Toughness of ZG14Ni3CrMoV Cast Steel[J]. Development and Application of Materials, 2017, 32(4): 5-8. DOI: 10.19515/j.cnki.1003-1545.2017.04.002
    [2]DENG Xian-hui. Research on Factors Affecting Toughness Fluctuation of High Strength Weld Metals[J]. Development and Application of Materials, 2012, 27(4): 13-15,20. DOI: 10.19515/j.cnki.1003-1545.2012.04.004
    [3]ZHANG Jing-hai, FANG Da-peng. Research on Deposited Metal Alloy Series of High-Strength SMAW Electrode[J]. Development and Application of Materials, 2012, 27(1): 25-28. DOI: 10.19515/j.cnki.1003-1545.2012.01.006
    [4]CHEN Li-zhi, ZHANG Ya-jun. Research on Low Temperature CTOD Fracture Toughness and da/dN Properties of S355N and S355N-Z25 Structural Steel Plate[J]. Development and Application of Materials, 2011, 26(5): 42-44,48. DOI: 10.19515/j.cnki.1003-1545.2011.05.010
    [5]LING Chun. Study on Toughness of New Type 440 MPa Nb-Ti Microalloyed Ship Steel Plate[J]. Development and Application of Materials, 2011, 26(2): 60-62,74. DOI: 10.19515/j.cnki.1003-1545.2011.02.013
    [6]CHEN Juan-juan, LU Ya-zhen, LIAO Yong-shan, GU Xiao-yang. Development of High Toughness Low-temperature Steel Electrode HH-W707[J]. Development and Application of Materials, 2010, 25(5): 27-29. DOI: 10.19515/j.cnki.1003-1545.2010.05.008
    [7]QU Zhan-yuan. Influence of Heat Input on Low Temperature Toughness of Submerged Arc Welding Seam on Marine E36 Steel[J]. Development and Application of Materials, 2010, 25(4): 7-9. DOI: 10.19515/j.cnki.1003-1545.2010.04.002
    [8]YAO Shang-wei, XU Jing-xian, CHEN Xin. Effect of Heat Input on Strength and Toughness of Welding Metal of High Strength Wire[J]. Development and Application of Materials, 2008, 23(4): 47-49. DOI: 10.19515/j.cnki.1003-1545.2008.04.013
    [9]LIU Ning-sheng, LI Mei-zhen, JIANG Cheng-gang, LONG Chang-mao, HUANG Bin. Affecting Factors Analysis of Low Temperature Impact Toughness of Welding Electrode E5018[J]. Development and Application of Materials, 2008, 23(4): 24-26. DOI: 10.19515/j.cnki.1003-1545.2008.04.007
    [10]WANG Jun-min. Effect of Mo、Ni on Strength and Toughness of Welding Metal of Base Electrode[J]. Development and Application of Materials, 2007, 22(5): 30-31,45. DOI: 10.19515/j.cnki.1003-1545.2007.05.008

Catalog

    Article Metrics

    Article views (154) PDF downloads (24) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return