Citation: | ZHANG Keren, ZHANG Lele, PAN Hengpei, CHEN Jieming, ZHAO Hui. Influence of Ta Doping on Microstructure and Mechanical Properties of γ-TiAl Based Alloy[J]. Development and Application of Materials, 2022, 37(6): 76-82. |
[1] |
ZHANG X S, CHEN Y J, HU J L. Recent advances in the development of aerospace materials[J]. Progress in Aerospace Sciences, 2018, 97:22-34.
|
[2] |
LIU J H, ZHANG F Q, NAN H, et al. Effect of C addition on as-cast microstructures of high Nb containing TiAl alloys[J]. Metals, 2019, 9(11):1201.
|
[3] |
HAUßMANN L, NEUMEIER S, BRESLER J, et al. Influence of Nb, Ta and Zr on the interdiffusion coefficients and solid solution strengthening of γ-TiAl single phase alloys[J]. Metals, 2022, 12(5):752.
|
[4] |
LAPIN J, MAREK K. Effect of continuous cooling on solid phase transformations in TiAl-based alloy during Jominy end-quench test[J]. Journal of Alloys and Compounds, 2018, 735:338-348.
|
[5] |
ZHANG K R, HU R, YANG J R, et al. The phase transformation behavior between γ lamellae and massive γ in a Ta containing TiAl-based alloy[J]. Journal of Alloys and Compounds, 2020, 821:153290.
|
[6] |
CHEN H M, LI X W, CHEN Z P, et al. Investigation on electronic structures and mechanical properties of Nb-doped TiAl2 intermetallic compound[J]. Journal of Alloys and Compounds, 2019, 780:41-48.
|
[7] |
FANG H Z, CHEN R R, CHEN X Y, et al. Effect of Ta element on microstructure formation and mechanical properties of high-Nb TiAl alloys[J]. Intermetallics, 2019, 104:43-51.
|
[8] |
HUANG A, HU D, WU X H, et al. The influence of interrupted cooling on the massive transformation in Ti46Al8Nb[J]. Intermetallics, 2007, 15(9):1147-1155.
|
[9] |
DEY S R, BOUZY E, HAZOTTE A. Intragranular nucleation sites of massive γ grains in a TiAl-based alloy[J]. Scripta Materialia, 2007, 57(4):365-368.
|
[10] |
LIU G H, LI T R, FU T L, et al. Morphology and competitive growth during the development of the parallel lamellar structure by self-seeding in directionally solidified Ti-50Al-4Nb alloy[J]. Journal of Alloys and Compounds, 2016, 682:601-609.
|
[11] |
MASSALSKI T B, LAUGHLIN D E, SOFFA W A. The nature and role of incoherent interphase interfaces in diffusional solid-solid phase transformations[J]. Metallurgical and Materials Transactions A, 2006, 37(3):825-831.
|
[12] |
AARONSON H I. Mechanisms of the massive transformation[J]. Metallurgical and Materials Transactions A, 2002, 33(8):2285-2297.
|
[13] |
SANKARAN A, BOUZY E, HUMBERT M, et al. Variant selection during nucleation and growth of γ-massive phase in TiAl-based intermetallic alloys[J]. Acta Materialia, 2009, 57(4):1230-1242.
|
[14] |
杨锐. 钛铝金属间化合物的进展与挑战[J]. 金属学报, 2015, 51(2):129-147.
|
[15] |
GAO Z T, HU R, HUANG Z J, et al. Metastable transformation behavior in a Ta-containing TiAl-Nb alloy during continuous cooling[J]. Journal of Alloys and Compounds, 2022, 904:164088.
|
[16] |
DEY S R, HAZOTTE A, BOUZY E. Crystallography and phase transformation mechanisms in TiAl-based alloys-A synthesis[J]. Intermetallics, 2009, 17(12):1052-1064.
|
[17] |
ZHANG K R, HU R, LI J G, et al. Grain refinement of 1 at.% Ta-containing cast TiAl-based alloy by cyclic air-cooling heat treatment[J]. Materials Letters, 2020, 274:127940.
|
[18] |
SAEEDIPOUR S, KERMANPUR A, SADEGHI F. Effect of N addition on microstructure refinement and high temperature mechanical properties of Ti-46Al-8Ta (at.%) intermetallic alloy[J]. Journal of Alloys and Compounds, 2020, 817:152749.
|
[19] |
LAPIN J, PELACHOVÁ T, DOMÁNKOVÁ M. Lon-gterm creep behaviour of cast TiAl-Ta alloy[J]. Intermetallics, 2018, 95:24-32.
|
[20] |
SAAGE H, HUANG A J, HU D, et al. Microstruc-tures and tensile properties of massively transformed and aged Ti46Al8Nb and Ti46Al8Ta alloys[J]. Intermetallics, 2009, 17(1-2):32-38.
|
[21] |
JIANG H, ZHANG K, HAO X J, et al. Nucleation of massive gamma during air cooling of Ti46Al8Ta[J]. Intermetallics, 2010, 18(5):938-944.
|
[22] |
ZHANG K R, HU R, WANG X Y, et al. Precipita-tion of two kinds of γ laths in massive γ coexisting with γ lamellae in as-cast Ta-containing TiAl-Nb alloys[J]. Materials Letters, 2016, 185:480-483.
|
[23] |
HU D, HUANG A J, WU X. On the massive phase transformation regime in TiAl alloys:the alloying effect on massive/lamellar competition[J]. Intermetallics, 2007, 15(3):327-332.
|
[24] |
WANG J G, ZHANG L C, CHEN G L, et al. TEM observations of mechanical twins in a hot-deformed Ti-45Al-10Nb alloy[J]. Materials Science and Engineering:A, 1998, 252(2):222-231.
|
[25] |
FU C L, YOO M H. Interfacial energies in two-phase TiAl-Ti3Al alloy[J]. Scripta Materialia, 1997, 37(10):1453-1459.
|
[26] |
ZHANG K R, HU R, LEI T C, et al. Refinement of massive γ phase with enhanced properties in a Ta containing γ-TiAl-based alloys[J]. Scripta Materialia, 2019, 172:113-118.
|
[27] |
WANG X D, SHEN Y D, SONG S X, et al. Atomic-scale understanding of the γ/α2 interface in a TiAl alloy[J]. Journal of Alloys and Compounds, 2020, 846:156381.
|
[28] |
WITTIG J E. The massive transformation in titanium aluminides:initial stages of nucleation and growth[J]. Metallurgical and Materials Transactions A, 2002, 33(8):2373-2379.
|
[29] |
LIU G H, WANG Z D, FU T L, et al. Study on the microstructure, phase transition and hardness for the TiAl-Nb alloy design during directional solidification[J]. Journal of Alloys and Compounds, 2015, 650:45-52.
|
[1] | GAO Yuhao, WANG Jia, WU Zepeng, CHEN Pei, ZHAI Jianfei. Study on Crack Curvature Correction Method in Fatigue Crack Growth Rate Test[J]. Development and Application of Materials, 2023, 38(2): 10-15. |
[2] | WANG Desheng, WANG Zhenghong, WANG Pengyun, ZHANG Fanxing, CHU Shaoqi, LI Li, XIE Shufeng, FENG Yan. Microstructures and Fatigue Crack Growth Rates of Domestic and Imported 5083-H116 Aliuminum Alloy[J]. Development and Application of Materials, 2021, 36(5): 20-29. |
[3] | LIU Peijing, XIN Fu'en. In-situ Growth Self-woven NiCo2O4 Nanosheet Multi-channels and its Capacitance Properties[J]. Development and Application of Materials, 2020, 35(4): 42-46,53. |
[4] | WANG Yuan, FEI Qiqi, ZHAO Cong, WANG Qiang, ZHANG Tianhui. Effect of Load on Fatigue Crack Growth of ADB610 Steel[J]. Development and Application of Materials, 2018, 33(1): 20-24. DOI: 10.19515/j.cnki.1003-1545.2018.01.005 |
[5] | WU Chunxue, ZHANG Yongfeng, REN Fangjie. Study on Fatigue Crack Growth Rate of High Pressure Vessel Steel[J]. Development and Application of Materials, 2016, 31(1): 27-29. DOI: 10.19515/j.cnki.1003-1545.2016.01.006 |
[6] | ZHA Xiao-qin, CHEN Pei, GAO Ling-qing. Research on Fatigure Crack Growth Behavior of Precharged with Hydrogen 1Cr17Ni2 steel[J]. Development and Application of Materials, 2014, 29(4): 14-19. DOI: 10.19515/j.cnki.1003-1545.2014.04.003 |
[7] | SONG Tai-fa, LI Zi-bo, YANG Fang-hui, ZHOU Jiang, LI Lin-mei. Study on the Synthesis of Gold Nano-flowers with Trypsin Enzyme[J]. Development and Application of Materials, 2013, 28(6): 71-75. DOI: 10.19515/j.cnki.1003-1545.2013.06.016 |
[8] | CHANG Lei, DENG Chun-feng, REN Fang-jie, SHAO Fei, WU Chun-xue, MEI Peng-cheng. Numerical Simulation of Fatigue Crack Growth on the Pressure Vessel’s Surface[J]. Development and Application of Materials, 2013, 28(5): 95-100. DOI: 10.19515/j.cnki.1003-1545.2013.05.022 |
[9] | WANG Ji-dong. Influence of Graphite Adding to the Solution of Sodium Hydroxide on the Growth and Wear Resistance of the Coatings Formed by Microarc Oxidation on Aluminum Alloys[J]. Development and Application of Materials, 2004, 19(3): 8-11. DOI: 10.19515/j.cnki.1003-1545.2004.03.003 |
[10] | Wang Chuanxin, Wang Jianhua, Man Weidong, Wang Shenggao, Ma Zhibin, Kang Zhicheng, Wu Sujuan. Study on Bias-enhanced Nucleation of Diamond Using Orthogonal Method[J]. Development and Application of Materials, 2003, 18(2): 6-8,30. DOI: 10.19515/j.cnki.1003-1545.2003.02.003 |
1. |
李传胜,王雷,郭糠,杨祥帆,于文晶,王利忠,王洪宝,张怀强,张英波. Mo对钛合金激光焊接接头组织性能影响研究. 电焊机. 2025(01): 73-79 .
![]() | |
2. |
董兵天,安子良,陈昊睿,武鹏博,罗玖田,牛董山钰,曹浩. 厚壁钛合金激光填丝焊研究现状及发展趋势. 电焊机. 2025(02): 46-57+69 .
![]() | |
3. |
张明盛,江舒,刘汉鼎,刘雨. 钛合金T型结构激光电弧复合对称焊接系统设计与分析. 现代信息科技. 2024(10): 177-182 .
![]() | |
4. |
都俐俐,张红兵,许守武,张凯丽,邱萍. Q345R钢焊缝区大气腐蚀行为研究. 材料开发与应用. 2022(06): 92-101 .
![]() |