Citation: | CHEN Zhigang, WANG Xiaoxin, LIU Huimin, WANG Li, LI Ni, SUN Meihui, AO Min. Research Progress in Selective Laser Melting of AluminumMatrix Composites[J]. Development and Application of Materials, 2024, 39(1): 86-93,116. |
[1] |
SINGH J, CHAUHAN A. Characterization of hybrid aluminum matrix composites for advanced applica-tions-A review[J]. Journal of Materials Research and Technology, 2016, 5(2): 159-169.
|
[2] |
SAMAL P, VUNDAVILLI P R, MEHER A, et al. Re-cent progress in aluminum metal matrix composites: a review on processing, mechanical and wear properties[J]. Journal of Manufacturing Processes, 2020, 59: 131-152.
|
[3] |
CHAK V, CHATTOPADHYAY H, DORA T L. A review on fabrication methods, reinforcements and mechanical properties of aluminum matrix composites[J]. Journal of Manufacturing Processes, 2020, 56: 1059-1074.
|
[4] |
JIA H L, SUN H, WANG H Z, et al. Scanning stra-tegy in selective laser melting (SLM): a review[J]. The International Journal of Advanced Manufacturing Technology, 2021, 113(9-10): 2413-2435.
|
[5] |
王力. 激光粉末床熔融高强度不锈钢显微组织调控与腐蚀行为研究[D]. 北京: 北京科技大学, 2023.
|
[6] |
ZHANG X, YOCOM C J, MAO B, et al. Microstructure evolution during selective laser melting of metallic materials: a review[J]. Journal of Laser Applications, 2019, 31(3):031201.
|
[7] |
FANG Z C, WU Z L, HUANG C G, et al. Review on residual stress in selective laser melting additive manufacturing of alloy parts[J]. Optics & Laser Techno-logy, 2020, 129: 106283.
|
[8] |
DEBROY T, WEI H L, ZUBACK J S, et al. Additive manufacturing of metallic components - Process, structure and properties[J]. Progress in Materials Science, 2018, 92: 112-224.
|
[9] |
ABOULKHAIR N T, SIMONELLI M, PARRY L, et al. 3D printing of aluminium alloys: Additive manufacturing of aluminium alloys using selective laser melting[J]. Progress in Materials Science, 2019, 106: 100578.
|
[10] |
WANG P, ECKERT J, PRASHANTH K G, et al. A review of particulate-reinforced aluminum matrix composites fabricated by selective laser melting[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(8): 2001-2034.
|
[11] |
THIJS L, KEMPEN K, KRUTH J P, et al. Finestr-uctured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg Powder[J]. Acta Materialia, 2013, 61(5): 1809-1819.
|
[12] |
MARTIN J H, YAHATA B D, HUNDLEY J M, et al. 3D printing of high-strength aluminium alloys[J]. Nature, 2017, 549(7672): 365-369.
|
[13] |
KIM D K, WOO W, HWANG J H, et al. Stress partitioning behavior of an AlSi10Mg alloy produced by selective laser melting during tensile deformation using in situ neutron diffraction[J]. Journal of Alloys and Compounds, 2016, 686: 281-286.
|
[14] |
HADADZADEH A, BAXTER C, AMIRKHIZ B S, et al. Strengthening mechanisms in direct metal laser sintered AlSi10Mg: comparison between virgin and recycled powders[J]. Additive Manufacturing, 2018, 23: 108-120.
|
[15] |
WANG Z Y, ZHUO L C, YIN E H, et al. Microstructure evolution and properties of nanoparticulate SiC modified AlSi10Mg alloys[J]. Materials Science and Engineering: A, 2021, 808: 140864.
|
[16] |
GAO C, LIU Z, XIAO Z, et al. Effect of heat treatment on SLM-fabricated TiN/AlSi10Mg composites: Microstructural evolution and mechanical properties[J]. Journal of Alloys and Compounds, 2021, 853: 156722.
|
[17] |
ABOULKHAIR N T, EVERITT N M, ASHCROFT I, et al. Reducing porosity in AlSi10Mg parts processed by selective laser melting[J]. Additive Manufactu-ring, 2014, 1-4: 77-86.
|
[18] |
Gu D, Wang H, Chang F, et al. Selective laser melting additive manufacturing of TiC/AlSi10Mg bulk-form nanocomposites with tailored microstructures and properties[J]. Physics Procedia, 2014, 56: 108-116.
|
[19] |
ZHOU S Y, WANG Z Y, SU Y, et al. Effects of micron/submicron TiC on additively manufactured AlSi10Mg: a comprehensive study from computer simulation to mechanical and microstructural analysis[J]. JOM, 2020, 72(10): 3693-3704.
|
[20] |
GAO C, WU W, SHI J, et al. Simultaneous enhancement of strength, ductility, and hardness of TiN/AlSi10Mg nanocomposites via selective laser melting[J]. Additive Manufacturing, 2020, 34: 101378.
|
[21] |
LI X P, JI G, CHEN Z, et al. Selective laser melting of nano-TiB2 decorated AlSi10Mg alloy with high fracture strength and ductility[J]. Acta Materialia, 2017, 129: 183-193.
|
[22] |
XI L X, ZHANG H, WANG P, et al. Comparative in-vestigation of microstructure, mechanical properties and strengthening mechanisms of Al-12Si/TiB2 fabricated by selective laser melting and hot pressing[J]. Ceramics International, 2018, 44(15): 17635-17642.
|
[23] |
LIAO H L, ZHANG W Q, CHEN C P, et al. Hybrid reinforced aluminum matrix composites fabricated by selective laser melting[J]. Intermetallics, 2021, 131: 107080.
|
[24] |
TAN Q Y, FAN Z Q, TANG X Q, et al. A novel st-rategy to additively manufacture 7075 aluminium alloy with selective laser melting[J]. Materials Science and Engineering: A, 2021, 821: 141638.
|
[25] |
XI L X, DING K, ZHANG H, et al. In-situ synthe-sis of aluminum matrix nanocomposites by selective laser melting of carbon nanotubes modified Al-Mg-Sc-Zr alloys[J]. Journal of Alloys and Compounds, 2022, 891: 162047.
|
[26] |
XU S Q, LI B L, LV Z X, et al. Microstructures and mechanical behaviors of reinforced aluminum matrix composites with modified nano-sized TiB2/SiC fabricated by selective laser melting[J]. Composites Communications, 2023, 37: 101439.
|
[27] |
ZHENG T Q, PAN S H, MURALI N, et al. Selective laser melting of novel 7075 aluminum powders with internally dispersed TiC nanoparticles[J]. Materials Letters, 2022, 319: 132268.
|
[28] |
JI Y C, DONG C F, KONG D C, et al. Design materials based on simulation results of silicon induced segregation at AlSi10Mg interface fabricated by selective laser melting[J]. Journal of Materials Science & Technology, 2020, 46: 145-155.
|
[29] |
FITE J, ESWARAPPA PRAMEELA S, SLOTWIN-SKI J A, et al. Evolution of the microstructure and mechanical properties of additively manufactured AlSi10Mg during room temperature holds and low temperature aging[J]. Additive Manufacturing, 2020, 36: 101429.
|
[30] |
WU J, WANG X Q, WANG W, et al. Microstructure and strength of selectively laser melted AlSi10Mg[J]. Acta Materialia, 2016, 117: 311-320.
|
[31] |
XIAO Y K, BIAN Z Y, WU Y, et al. Effect of nano-TiB2 particles on the anisotropy in an AlSi10Mg alloy processed by selective laser melting[J]. Journal of Alloys and Compounds, 2019, 798: 644-655.
|
[32] |
AO M, DONG C F, LI N, et al. Unexpected stress corrosion cracking improvement achieved by recrystallized layer in Al-Zn-Mg alloy[J]. Journal of Materials Engineering and Performance, 2021, 30(8): 6258-6268.
|
[33] |
ZHANG S Z, CHEN Z, WEI P, et al. Wear proper-ties of graphene/zirconia biphase nano-reinforced aluminium matrix composites prepared by SLM[J]. Materials Today Communications, 2022, 30: 103009.
|
[34] |
AO M, JI Y C, YI P, et al. Relationship between elements migration of α-AlFeMnSi phase and micro-galvanic corrosion sensitivity of Al-Zn-Mg alloy[J]. International Journal of Minerals, Metallurgy and Materials, 2023, 30(1): 112-121.
|
[35] |
LI N, DONG C F, MAN C, et al. Insight into the localized strain effect on micro-galvanic corrosion behavior in AA7075-T6 aluminum alloy[J]. Corrosion Science, 2021, 180: 109174.
|
[1] | GONG Hui, XU Chuqi, YAO Jinghuas. Correlation Analysis for Copper Release Rate Test Results of Antifouling Paint in Indoor Simulated and Real Seawater Environment[J]. Development and Application of Materials, 2022, 37(6): 114-118. |
[2] | CHEN Leilei, CHEN Shanshan, NIU Yongfeng, LIN Jiancong, YANG Mingliang, LIU Yilong. Research Progress of Marine Antifouling Biocides[J]. Development and Application of Materials, 2021, 36(5): 94-102. |
[3] | FENG Xiaofeng, XIA Xiufeng, HE Chunju. Preparation of Antifouling Coatings of Zwitter-ion Nano-silica Particles Inspired by Mussel[J]. Development and Application of Materials, 2018, 33(2): 33-37. DOI: 10.19515/j.cnki.1003-1545.2018.02.005 |
[4] | LIU Yin-song, LIU Ming-guang, LI Liang, YAN Xin. Antifouling Coatings Based on Acrylate Copolymers Containing Quaternary Ammonium Salt[J]. Development and Application of Materials, 2015, 30(3): 17-20. DOI: 10.19515/j.cnki.1003-1545.2015.03.004 |
[5] | YE Xian-huai, LI Liang, ZHAO Hua, WANG Hai-rong, ZHANG Ying. Direct Electrolysis-atomic Absorption Spectrometric Method for Determination of Total Copper in Antifouling Paints[J]. Development and Application of Materials, 2015, 30(2): 79-81. DOI: 10.19515/j.cnki.1003-1545.2015.02.017 |
[6] | ZHANG Xiao, CHEN Xi-guang, DUAN Dong-xia, LIN Cun-guo. Antifouling Activities of Metabolic Product Produced by Marine Bacteria[J]. Development and Application of Materials, 2013, 28(4): 26-31. DOI: 10.19515/j.cnki.1003-1545.2013.04.007 |
[7] | ZHANG Jin-wei, LIN Cun-guo, XU Feng-ling, WANG Li, DUAN Dong-xia, ZHENG Ji-yong, ZHOU Juan. Protein Resistance Materials and Its Application Prospect in Marine Antifouling Materials[J]. Development and Application of Materials, 2013, 28(3): 123-126. DOI: 10.19515/j.cnki.1003-1545.2013.03.027 |
[8] | XU Feng-ling, LIN Cun-guo, YU Hong-xian, ZHENG Ji-yong. The Study of Controlled Release of Marine Antifoulant[J]. Development and Application of Materials, 2013, 28(3): 119-122. DOI: 10.19515/j.cnki.1003-1545.2013.03.026 |
[9] | LUO Zheng-hong, HONG Shun-li, HE Teng-yun. Formulation Design of Low Surface Energy Marine Antifouling Coatings[J]. Development and Application of Materials, 2006, 21(6): 33-35. DOI: 10.19515/j.cnki.1003-1545.2006.06.010 |
[10] | Zhao Xiaoyan. The Research Progress of the Marine Natural Product Antifoulants[J]. Development and Application of Materials, 2001, 16(4): 34-37. DOI: 10.19515/j.cnki.1003-1545.2001.04.010 |