PENG Yunsong, GUO Wantao, TAO Hongbo, YANG Yong. Interfacial Properties of Vinyl Resin Composites and Rubber[J]. Development and Application of Materials, 2017, 32(2): 29-33. DOI: 10.19515/j.cnki.1003-1545.2017.02.006
Citation: PENG Yunsong, GUO Wantao, TAO Hongbo, YANG Yong. Interfacial Properties of Vinyl Resin Composites and Rubber[J]. Development and Application of Materials, 2017, 32(2): 29-33. DOI: 10.19515/j.cnki.1003-1545.2017.02.006

Interfacial Properties of Vinyl Resin Composites and Rubber

More Information
  • Received Date: September 21, 2016
  • Available Online: March 17, 2024
  • The surface of rubber was modified and coated by connection layer and the interfacial binding of vinyl resin composite and rubber was investigated.Results showed that when the rubber surface was treated with chemical reagent, microcracks appeared on the surface, which was beneficial for the binding; when the rubber surface was chemical treated and coated with flexible connection layer, the peel strength of the interface was improved to 2. 90 k N/m and the adhesive strength 2. 30 MPa.
  • Related Articles

    [1]WU Xiaofei, DUAN Mengqiang, WU Yukun, WANG Qi, JIANG Peng. Effect of Heat Treatment on Microstructure and Mechanical Properties of Ti5211 Plates[J]. Development and Application of Materials, 2020, 35(4): 11-13,23.
    [2]HUANG Wei, WANG Shaogang, LI Lize, JIN Yang. Laser Beam Welding of Titanium Alloy and Microstructure and Mechanical Properties of Welded Joint[J]. Development and Application of Materials, 2019, 34(2): 20-27. DOI: 10.19515/j.cnki.1003-1545.2019.02.004
    [3]HAO Xiaobo, ZHANG Qiang, LI Bobo, LIU Yinqi, LI Yang. Effect of High Temperature Annealing in α + β Phase Region on Microstructure and Mechanical Properties of Ti80 Alloy Plates[J]. Development and Application of Materials, 2018, 33(1): 49-53. DOI: 10.19515/j.cnki.1003-1545.2018.01.008
    [4]WANG Xinghua, WU Yanming, MENG Wei, ZHANG Chengjie. Microstructure and Mechanical Properties of Laser Forming Repair 10Cr5NiMoV Steel with Inconel 625 Powder[J]. Development and Application of Materials, 2016, 31(5): 31-35. DOI: 10.19515/j.cnki.1003-1545.2016.05.007
    [5]LUO Li-yang, CHEN Shuai-chao, WANG Xin-peng, NING Tian-xin, ZHANG Chun-lin. Microstructure and Properties of Alloy 625 Cold Rolled Sheet[J]. Development and Application of Materials, 2015, 30(4): 30-35,42. DOI: 10.19515/j.cnki.1003-1545.2015.04.007
    [6]ZHANG Jie-pin, MIN Xin-hua. Effects of Elements N,O and Fe on Microstructure and Property of TA15 Titanium Alloy[J]. Development and Application of Materials, 2013, 28(2): 83-86. DOI: 10.19515/j.cnki.1003-1545.2013.02.019
    [7]LIU Gang, LIU Wei, YANG Jing-hong. Technology and Microstructure of Flame Distortion Correction and Line Neat Forming for New Type 440 MPa Ship Building Steel[J]. Development and Application of Materials, 2012, 27(5): 17-19. DOI: 10.19515/j.cnki.1003-1545.2012.05.005
    [8]LU Xiao-sheng, LIU Hong. Effects of Flame Process on Mechanical Properties and Microstructure of Continuous Casting 10MnNiCrMoV Plate[J]. Development and Application of Materials, 2006, 21(3): 18-22. DOI: 10.19515/j.cnki.1003-1545.2006.03.007
    [9]LIU Rui-min, LI Xing-wu, SHA Ai-xue. The Study of the Microstructure and Properties of TA15 Titanium Alloy Plate[J]. Development and Application of Materials, 2005, 20(4): 23-26. DOI: 10.19515/j.cnki.1003-1545.2005.04.007
    [10]Meng Xiangjun, Liu Yinqi. Flame Forming Technological Property of Titanium Alloy Plate[J]. Development and Application of Materials, 2003, 18(5): 21-24. DOI: 10.19515/j.cnki.1003-1545.2003.05.006

Catalog

    Article Metrics

    Article views (28) PDF downloads (1) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return