BING Shaowang, TAN Hua, WANG Xinning, QIN Shengjie, JI Peng, YU Qing, WANG Xianjie. Effect of WC Additions on Microstructure and Properties of Fecrnisib Surfacing Layer Prepared by Plasma Surfacing[J]. Development and Application of Materials, 2024, 39(6): 44-52.
Citation: BING Shaowang, TAN Hua, WANG Xinning, QIN Shengjie, JI Peng, YU Qing, WANG Xianjie. Effect of WC Additions on Microstructure and Properties of Fecrnisib Surfacing Layer Prepared by Plasma Surfacing[J]. Development and Application of Materials, 2024, 39(6): 44-52.

Effect of WC Additions on Microstructure and Properties of Fecrnisib Surfacing Layer Prepared by Plasma Surfacing

More Information
  • Received Date: March 25, 2024
  • FeCrNiSiB surfacing layers with different mass fractions of WC powders are prepared on surface of Q235 low-carbon steel used in ships by plasma surfacing method, and the effects of WC addition on the microstructure, hardness and friction and wear properties of the FeCrNiSiB surfacing layer are investigated. Results show that the cross section of the surfacing specimen consists of three parts, which are the surfacing layer, fusion zone and matrix. The phases in the surfacing layer include Cr23C6, Cr3Fe14C, C and WC. Black and white phases are alternately distributed in the surfacing layer. The white phase is alloy binding phase with low melting point, which has a large amount of Fe and C elements, and a small amount of Cr and W. Compared with the white phase, the black phase is carbide strengthening phase with high melting point, with a small amount of Fe element and a large amount of W, C and Cr elements, and the addition of WC powders promote the volume ratio of the carbide strengthening phase. The hardness of the surfacing layer rises with the increase of the WC addition, and the hardnesses in the lower zone of the surfacing layer are higher than that in the upper part. The friction coefficient of the surfacing layer remains between 0.55 and 0.65, and with the increase of WC addition, the friction coefficient decreases first and then increases. The FeCrNiSiB surfacing layer prepared with WC addition of 30% and the welding current of 130 A has the best friction and wear performance.
  • [1]
    张京贤. 激光、等离子重熔等离子喷涂Ni包WC涂层参数优化与耐蚀性研究[D]. 南京: 河海大学, 2007.
    [2]
    张丽民,孙冬柏,李惠琪,等.等离子束表面冶金技术研究及其进展[J]. 金属热处理, 2006, 31(2):12-16.
    [3]
    邓德伟,陈蕊,张洪潮.等离子堆焊技术的现状及发展趋势[J]. 机械工程学报, 2013, 49(7): 106-112.
    [4]
    GURUMOORTHY K, KAMARAJ M, RAO K P, et al. Microstructural aspects of plasma transferred arc surfaced Ni-based hardfacing alloy[J]. Materials Science and Engineering:A, 2007, 456(1-2): 11-19.
    [5]
    宗琳,徐俊尧,王学钊,等.等离子弧堆焊高铬铁基合金的组织形成机制及对显微硬度的影响[J]. 焊接技术, 2023, 52(1):17-21.
    [6]
    胡建军,陈国清,李闪,等.不同镍基合金等离子堆焊层的微观组织及性能[J]. 热加工工艺, 2013, 42(3):151-155.
    [7]
    门向东, 陶凤和, 甘霖, 等. 炮钢表面等离子堆焊Fe基涂层及其烧蚀行为研究[J]. 北京理工大学学报, 2018,38(4): 423-429.
    [8]
    邓德伟, 刘海英, 张林, 等. 电流对等离子堆焊Fe90组织与性能的影响[J]. 材料热处理学报, 2017,38(7): 138-144.
    [9]
    线澜清, 庄明辉, 陈超, 等. 钼含量对Fe-Cr-B堆焊合金显微组织及耐磨性的影响[J]. 材料保护, 2022,55(10): 64-68.
    [10]
    罗燕, 徐志鹏, 李飞, 等. Cr3C2对等离子钴基堆焊层组织及性能的影响[J]. 安徽工业大学学报(自然科学版), 2014,31(1): 34-38.
    [11]
    刘建弟,张述泉,王华明.激光熔覆WC颗粒增强复合涂层的组织及耐磨性[J]. 中国有色金属学报, 2012, 22(9):2600-2607.
    [12]
    葛言柳,邓德伟,鲁俊,等.两种Ni-Cr-B-Si系合金等离子堆焊层组织结构和显微硬度的研究[J]. 表面技术, 2012, 41(1): 5-8.
    [13]
    HOU Q Y, GAO J S, ZHOU F. Microstructure and wear characteristics of cobalt-based alloy deposited by plasma transferred arc weld surfacing[J]. Surface and Coatings Technology, 2005, 194(2-3): 238-243.
    [14]
    刘治宇, 王振宇, 刘政军, 等. 等离子弧堆焊WC增强镍基堆焊层的组织及耐磨性研究[J]. 热加工工艺, 2023,52(17): 27-31.
    [15]
    BEAURIN G, MATHIEU J P, GAUTHIER E, et al. Microstructural and mechanical properties evolutions of plasma transferred arc deposited Norem02 hardfacing alloy at high temperature[J]. Materials Science and Engineering:A, 2011, 528(15): 5096-5105.
    [16]
    李祖来,蒋业华,周荣,等. WC/铁基表面复合材料的热疲劳裂纹形成过程[J]. 复合材料学报, 2008, 25(2): 21-24.
  • Related Articles

    [1]LIU Shu-liang, GUO Wan-tao, MA Yu-pu. Mechanical Properties of Web-core Reinforced Sandwich Structures[J]. Development and Application of Materials, 2014, 29(5): 62-67. DOI: 10.19515/j.cnki.1003-1545.2014.05.012
    [2]WEI Jun-wei, ZHANG Xing-gang, GUO Wan-tao. Study of Typical Sandwich Structural Composites VARI Process Molding Simulation Technology and Molding Experiments[J]. Development and Application of Materials, 2013, 28(5): 71-78. DOI: 10.19515/j.cnki.1003-1545.2013.05.018
    [3]LU Xian-xiao. Fabrication and Properties of Sandwich Structure Acoustic Absorption Composite Materials[J]. Development and Application of Materials, 2013, 28(5): 64-67. DOI: 10.19515/j.cnki.1003-1545.2013.05.016
    [4]ZHENG Yong-hong. Effect of Weaving Method on the Fabric Property[J]. Development and Application of Materials, 2013, 28(4): 70-74. DOI: 10.19515/j.cnki.1003-1545.2013.04.015
    [5]DENG Bing-feng, HUANG Cong-shu, YE Zhang-ji, REN Run-tao, HUANG Zhi-xiong. Ring-opening Polymerization and Application of Caprolactone[J]. Development and Application of Materials, 2012, 27(6): 72-77. DOI: 10.19515/j.cnki.1003-1545.2012.06.017
    [6]WEI Jun-wei, GUO Wan-tao, ZHANG Yong-bing. Study of Sandwich Structural Composites VARI Process Molding Simulation Technology and Molding Experiments[J]. Development and Application of Materials, 2012, 27(2): 51-58. DOI: 10.19515/j.cnki.1003-1545.2012.02.013
    [7]ZHANG Yan-yang, WANG De-yi, ZHAN Xiao-mei, TAN Chang-ling. Study on the Soft Magnetic Performance of 1J50 Alloy in Vary Heat Treatment Technology[J]. Development and Application of Materials, 2012, 27(2): 24-27. DOI: 10.19515/j.cnki.1003-1545.2012.02.006
    [8]WEI Jun-wei, GUO Wan-tao, ZHANG Yong-bing. Study on Simulation Technology of Foam Sandwich Structural Composites VARI Process Molding[J]. Development and Application of Materials, 2011, 26(6): 29-36. DOI: 10.19515/j.cnki.1003-1545.2011.06.008
    [9]WEI Jun-wei, ZHANG Yong-bing, GUO Wan-tao. Development of Vacuum Assisted Resin Infusion(VARI)[J]. Development and Application of Materials, 2010, 25(3): 99-105. DOI: 10.19515/j.cnki.1003-1545.2010.03.022
    [10]WU Yu-fen, ZHANG Bo-ming. Numerical Analysis and Simulation of the Vacuum Infusion Moulding Process[J]. Development and Application of Materials, 2009, 24(6): 67-71. DOI: 10.19515/j.cnki.1003-1545.2009.06.017

Catalog

    Article Metrics

    Article views (41) PDF downloads (17) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return