ZHOU Nanyang, HE Liang, CHENG Bin, DU Yi. Research Progress in Improving Mechanical Properties of Welded Joints by Ultrasonic Impact Treatment[J]. Development and Application of Materials, 2023, 38(5): 94-98.
Citation: ZHOU Nanyang, HE Liang, CHENG Bin, DU Yi. Research Progress in Improving Mechanical Properties of Welded Joints by Ultrasonic Impact Treatment[J]. Development and Application of Materials, 2023, 38(5): 94-98.

Research Progress in Improving Mechanical Properties of Welded Joints by Ultrasonic Impact Treatment

More Information
  • Received Date: December 09, 2022
  • Available Online: November 06, 2023
  • Structural failure of welded joints due to high residual stress is a common technical problem in welded structures. For ultrasonic impact treatment can effectively improve the mechanical properties of welded joints, it has been widely used in various fields. In this study, we focus on the research of ultrasonic impact technology in reducing residual stresses and improving fatigue properties of welded joints, as well as the latest related research and application of the ultrasonic impact technology with welding.
  • [1]
    葛明兰, 鲁家晟. 焊接残余应力对焊接结构的影响[J]. 福建建筑, 2010(7): 50-52.
    [2]
    孙乃明. 焊接残余应力对焊接结构的影响[J]. 装备制造技术, 2013(3): 138-139.
    [3]
    王文先, 王东坡, 齐芳娟. 焊接结构[M]. 北京: 化学工业出版社, 2012.
    [4]
    宋天民. 焊接残余应力的产生与消除[M]. 北京: 中国石化出版社, 2005.
    [5]
    季鹏, 季鹤. 钢结构焊接残余应力及焊接变形控制研究[J]. 世界有色金属, 2017(3): 191.
    [6]
    杨延功, 焦启林. 消除焊接残余应力的四种方法[J]. 工程机械与维修, 2009(9): 172-173.
    [7]
    ZHU Y L. Progresses on research and application of metal ultrasonic surface enhancement technologies[J]. Journal of Mechanical Engineering, 2014, 50(20): 35.
    [8]
    STATNIKOV E S, MUKTEPAVEL V O, BLOMQ-VIST A. Comparison of ultrasonic impact treatment (UIT) and other fatigue life improvement methods[J]. Welding in the World, 2002, 46(3): 20-32.
    [9]
    YIN D Q, WANG D P, JING H Y, et al. The effects of ultrasonic peening treatment on the ultra-long life fatigue behavior of welded joints[J]. Materials & Design, 2010, 31(7): 3299-3307.
    [10]
    YANG X J, LING X, ZHOU J X. Optimization of the fatigue resistance of AISI304 stainless steel by ultrasonic impact treatment[J]. International Journal of Fatigue, 2014, 61: 28-38.
    [11]
    胡章咏, 晏嘉陵, 刘川, 等. 超声冲击处理对不同强度等级钢焊接残余应力的影响[J]. 应用力学学报, 2021, 38(2): 730-737.
    [12]
    饶德林, 陈立功, 倪纯珍, 等. 超声冲击对焊接结构残余应力的影响[J]. 焊接学报, 2005, 26(4): 48-50.
    [13]
    马国, 张立平, 刘夕, 等. 超声冲击处理工艺对Q345焊接热影响区残余应力的影响[J]. 表面技术, 2017, 46(7): 208-212.
    [14]
    黄丽婷, 陈明和, 谢兰生, 等. 超声冲击载荷对CP3钛合金焊接接头残余应力的影响[J]. 航空材料学报, 2014, 34(1): 52-55.
    [15]
    陈佳伟. 超声波冲击处理消除16MnR焊件残余应力的研究[D]. 长春: 吉林大学, 2010. 2010: 62.
    [16]
    牛亚如. 超声冲击改善焊接接头疲劳性能的数值分析[D]. 天津: 天津大学, 2018.
    [17]
    王东坡, 周达. 超声冲击法提高焊接接头疲劳强度的机理分析[J]. 天津大学学报, 2007, 40(5): 623-628.
    [18]
    TEHRANI YEKTA R, GHAHREMANI K, WALBR-IDGE S. Effect of quality control parameter variations on the fatigue performance of ultrasonic impact treated welds[J]. International Journal of Fatigue, 2013, 55: 245-256.
    [19]
    白易立, 王东坡, 邓彩艳, 等. 超声冲击强度对焊接接头疲劳寿命的影响[J]. 焊接学报, 2019, 40(12): 149-153.
    [20]
    邓彩艳, 刘夕, 王东坡. 高温超声冲击处理Q345钢焊接接头的疲劳性能[J]. 焊接学报, 2014, 35(11): 47-50.
    [21]
    徐艳. 高温条件下超声冲击处理Q345钢焊接接头疲劳行为研究[D]. 天津: 天津大学, 2012.
    [22]
    邓彩艳, 牛亚如, 龚宝明, 等. 承载超声冲击下焊接接头疲劳性能的改善[J]. 焊接学报, 2017, 38(7): 72-76.
    [23]
    薛钢. 表面压应力对10Ni5CrMoV钢疲劳性能的影响[J]. 材料开发与应用, 2009, 24(2): 1-3.
    [24]
    赵维. 实时超声冲击消减焊接残余应力及变形的实验和仿真研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.
    [25]
    马冉. 随焊超声冲击消除焊接残余应力的有限元分析[D]. 济南: 山东大学, 2015.
    [26]
    李栋. 正面随焊超声冲击对焊接残余应力与变形的影响[D]. 济南: 山东大学, 2017.
    [27]
    贺文雄, 肖昌辉, 史菲, 等. 实时超声冲击消减焊接残余应力[J]. 焊接学报, 2015, 36(8): 84-87.
    [28]
    肖昌辉. 实时超声冲击消除焊接残余应力和变形的研究[D]. 哈尔滨: 哈尔滨工业大学, 2013.
    [29]
    李思昊. 实时超声冲击对焊接应力变形及接头组织性能的影响[D]. 哈尔滨: 哈尔滨工业大学, 2014.
  • Related Articles

    [1]BU Fan, NIE Shuai, LIU Haoxiang, LIU Xudong, HE Yixuan, WANG Jun. Effect of Heat Treatment Assisted with Magnetic Field on Microstructure and Magnetic Properties of Co-Ni-Al Alloy[J]. Development and Application of Materials, 2025, 40(1): 1-12.
    [2]WANG Houqin, GAN Shuhe, WANG Yifan, SONG Qingjun, ZHANG Binggang. Study on Microstructures and Mechanical Properties of 60 mm Thick TC4 ELI Titanium Alloy Welded Joints by Electron Beam Welding[J]. Development and Application of Materials, 2024, 39(6): 35-43,52.
    [3]YANG Jun, HUANG Dongya, WANG Yue, MO Manman, LIN Baichun, YANG Shu. Research and Application Progress on Production of Anisotropic NdFeB Magnetic Powder by HDDR Process[J]. Development and Application of Materials, 2023, 38(2): 97-108.
    [4]WANG Han, SHI Bo-wen, NIU Jian-min, LIU Ji-li. Study on Superelastic Anisotropy Parameters and Numerical Calculation of Columnar-grained Cu-Al-Mn Shape Memory Alloy[J]. Development and Application of Materials, 2022, 37(2): 1-9.
    [5]LI Bobo, ZHANG Qiang, PEI Teng, LIU Yinqi, ZHU Junjie, LI Yang. Study on Rolling Structure and Properties of TC4 Titanium Alloy EB Slab[J]. Development and Application of Materials, 2020, 35(1): 5-9.
    [6]SUN Jiangang, GAO Fuyang, GAO Qi, JIN Xiangdong. Study on Microstructure and Properties of Hot-wire-TIG Welded Joint of TC4 Titanium Alloy[J]. Development and Application of Materials, 2019, 34(2): 9-13. DOI: 10.19515/j.cnki.1003-1545.2019.02.002
    [7]YANG Jun, YANG Caiyun, CHENG Huanhuan, HUANG Dongya, ZHANG Yilun. Research Progress of Anisotropic NdFeB Magnetic Powders by HDDR Process[J]. Development and Application of Materials, 2019, 34(1): 98-105. DOI: 10.19515/j.cnki.1003-1545.2019.01.019
    [8]JI Dawei, LIU Yinqi, CHEN Tao, HAO Xiaobo, ZHANG Yi. Research on the Anisotropy of Tensile Properties and Impact Toughness of Ti75 Alloy Plate[J]. Development and Application of Materials, 2016, 31(5): 53-58. DOI: 10.19515/j.cnki.1003-1545.2016.05.013
    [9]LIU Xilin, XU Jialei, WANG Ying, GENG Yongliang, WANG Gang. Structure and Mechanical properties of Welded Joint of 33 mm-thick TC4 Titanium Alloy by Electron Beam Welding Technique[J]. Development and Application of Materials, 2016, 31(5): 49-52. DOI: 10.19515/j.cnki.1003-1545.2016.05.012
    [10]YANG Hai-ying, CHEN Jun, ZHAO Yong-qing. Effect of Heat Treatment on Microstructure and Mechanical Properties of TC4-DT Alloy[J]. Development and Application of Materials, 2009, 24(2): 13-16. DOI: 10.19515/j.cnki.1003-1545.2009.02.004

Catalog

    Article Metrics

    Article views (157) PDF downloads (24) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return