LIU Xuesong, GUO Shaofei. A Review on Integrity Evaluation and Fatigue Life Prediction Technology of Welded Joint in Ship Engineering[J]. Development and Application of Materials, 2023, 38(5): 75-85.
Citation: LIU Xuesong, GUO Shaofei. A Review on Integrity Evaluation and Fatigue Life Prediction Technology of Welded Joint in Ship Engineering[J]. Development and Application of Materials, 2023, 38(5): 75-85.

A Review on Integrity Evaluation and Fatigue Life Prediction Technology of Welded Joint in Ship Engineering

More Information
  • Received Date: May 24, 2023
  • Available Online: November 06, 2023
  • Integrity assessment and fatigue life prediction of welded joints containing defects in hull structures are introduced, and the K criteria, COD criteria, J integral criterion, SINTAP/FITNET safety assessment method and process, and domestic and international standards for structural integrity assessment are introduced. The factors affecting the fatigue strength of welded joints, such as the average stress, residual stress and stress concentration in the joint geometry, are also analyzed. Common methods for fatigue life prediction of welded joints are introduced, such as nominal stress-based assessment methods, fracture mechanics-based assessment methods, damage mechanics-based assessment methods and other fatigue assessment methods. In addition, the functional relationship between the welded residual stress and fatigue crack extension life established based on the fracture mechanics method is introduced, which can realize the accurate prediction of fatigue life of welded structures containing residual stress.
  • [1]
    STAVOVY A B. Ultimate Longitudinal strength[J]. Marine Technology Society Journal, 1970(7).
    [2]
    PAIK J K. Principles and criteria for ultimate limit state design and strength assessment of ship hulls[J]. The International Journal of Maritime Engineering, 2004, 146(a3): 10.
    [3]
    熊晓枫. 薄壁结构非线性有限元数值计算及其稳定性分析研究[D]. 西安: 西北工业大学, 2006.
    [4]
    杜庆喜. 船体结构强度直接计算方法研究[D]. 武汉: 武汉理工大学, 2007.
    [5]
    田文静. 薄膜型LNG船的总纵极限承载能力研究[D]. 武汉: 华中科技大学, 2008.
    [6]
    彭大炜. 舰船新型甲板结构型式的极限强度研究[D]. 上海: 上海交通大学, 2010.
    [7]
    何福志, 马建军, 万正权. 船体结构总纵极限强度的简化逐步破坏分析方法[J]. 中国造船, 2005, 46(2): 17-27.
    [8]
    SMITH C S. Influence of local compressive failure on ultimate longitudinal strength of a ship’s hull[J]. PRADS, 1977, 77:73-79.
    [9]
    Cramer E H, Robert L, Olaisen K. Fatigue asses-sment of ship structure[J]. Marine Structures, 1995, 8(4): 359-383.
    [10]
    US-ABS. Rules for building and classing steel vessels[S]. Houston: American Bureau of Shipping, 2002.
    [11]
    中国船级社. 船体结构疲劳强度指南[S]. 北京:人民交通出版社, 2001.
    [12]
    邓彩艳. 海底油气管道断裂性能及安全评定研究[D]. 天津: 天津大学, 2003: 4-7.
    [13]
    MILNE I, AINSWORTH R A, DOWLING A R, et al. Assessment of the integrity of structures containing defects[J]. International Journal of Pressure Vessels and Piping, 1988, 32(1-4): 3-104.
    [14]
    AINSWORTH R A, BANNISTER A C, ZERBST U. An overview of the European flaw assessment procedure SINTAP and its validation[J]. Intern-ational Journal of Pressure Vessels and Piping, 2000, 77(14-15): 869-876.
    [15]
    WEBSTER S, BANNISTER A. Structural integrity assessment procedure for Europe of the SINTAP programme overview[J]. Engineering Fracture Mechan-ics, 2000, 67(6): 481-514.
    [16]
    LIE S T, YANG Z M, GHO W M. Validation of BS7910: 2005 failure assessment diagrams for cracked square hollow section T-, Y- and K-joints[J]. International Journal of Pressure Vessels and Piping, 2009, 86(5): 335-344.
    [17]
    马敬东, 李亚宁. 国际缺陷评定方法研究进展[J]. 材料导报, 2006, 20(4): 86-89.
    [18]
    BUDDEN P J, SHARPLES J K, DOWLING A R. The R6 procedure: recent developments and comparison with alternative approaches[J]. International Journal of Pressure Vessels and Piping, 2000, 77(14-15): 895-903.
    [19]
    Hobbacher A F. Fatigue design of welded joints and components (Second Edition)[S]. IIW document IIW-2259-15, 2016.
    [20]
    BAUMGARTNER J. Enhancement of the fatigue st-rength assessment of welded components by consideration of mean and residual stresses in the crack initiation and propagation phases[J]. Welding in the World, 2016, 60(3): 547-558.
    [21]
    VÖHRINGER O. Relaxation of residual stresses by annealing or mechanical treatment[M]//MORDFIN L., Ed. Residual Stresses. Amsterdam: Elsevier, 1987: 367-396.
    [22]
    HENSEL J, NITSCHKE-PAGEL T, DILGER K. Effects of residual stresses and compressive mean stresses on the fatigue strength of longitudinal fillet-welded gussets[J]. Welding in the World, 2016, 60(2): 267-281.
    [23]
    赵智力. 基于等承载能力原则的高强钢低匹配焊接接头设计[D]. 哈尔滨: 哈尔滨工业大学, 2009: 24-62.
    [24]
    王涛. 基于断裂参量K因子的焊接接头等承载设计[D]. 哈尔滨: 哈尔滨工业大学, 2012: 19-30.
    [25]
    王佳杰. 低匹配焊接接头弯曲等承载设计及随焊整形[D]. 哈尔滨: 哈尔滨工业大学, 2015: 24-50.
    [26]
    NYKÄNEN T, MARQUIS G, BJÖRK T. A simplified fatigue assessment method for high quality welded cruciform joints[J]. International Journal of Fatigue, 2009, 31(1): 79-87.
    [27]
    SAIPRASERTKIT K, HANJI T, MIKI C. Fatigue strength assessment of load-carrying cruciform joints with material mismatching in low-and high-cycle fatigue regions based on the effective Notch concept[J]. International Journal of Fatigue, 2012, 40: 120-128.
    [28]
    British Standards Institution. Guide to fatigue design and assessment of steel products[S].BSI Standards Publication, 2014.
    [29]
    Recommended practice DNV-RP-C203: fatigue design of offshore steel structures[S]. Det Norske Veritas, 2013.
    [30]
    Eurocode 3-Design of steel structures-Part 1-12: A-dditional rules for the extension of EN 1993 up to steel grades S 700: DS/EN 1993-1-12: 2007[S]. Danish Standards, 2007.
    [31]
    The American Society of Mechanical Engineers. De-sign and fabrication of pressure vessels[M], Boiler and Pressure Vessel Code Section. 2012.
    [32]
    JSSC. Fatigue design recommendations for steel structures[S].Tokyo: Japanese Society of Steel Construction, 1995.
    [33]
    GOYAL R, BOGDANOV S, EL-ZEIN M, et al. Fracture mechanics based estimation of fatigue lives of laser welded joints[J]. Engineering Failure Analysis, 2018, 93: 340-355.
    [34]
    CITARELLA R, CARLONE P, LEPORE M, et al. Numerical-experimental crack growth analysis in AA2024-T3 FSWed butt joints[J]. Advances in Engineering Software, 2015, 80: 47-57.
    [35]
    PATEL V K, BHOLE S D, CHEN D L. Fatigue life estimation of ultrasonic spot welded Mg alloy joints[J]. Materials & Design (1980-2015), 2014, 62: 124-132.
    [36]
    SPRINGER M, PETTERMANN H E. Fatigue life predictions of metal structures based on a low-cycle, multiaxial fatigue damage model[J]. International Journal of Fatigue, 2018, 116: 355-365.
    [37]
    HORMOZI R, BIGLARI F, NIKBIN K. Taguchi sensitivity analysis of damage parameters for predicting the damage Mechanism of 9Cr steel under low-cycle fatigue test[J]. Fatigue & Fracture of Engineering Materials & Structures, 2014, 37(11): 1211-1222.
    [38]
    FENG L Y, QIAN X D. Low cycle fatigue test and enhanced lifetime estimation of high-strength steel S550 under different strain ratios[J]. Marine Structures, 2018, 61: 343-360.
    [39]
    HU P, MENG Q C, HU W P, et al. A continuum damage mechanics approach coupled with an improved pit evolution model for the corrosion fatigue of aluminum alloy[J]. Corrosion Science, 2016, 113: 78-90.
    [40]
    JIE Z Y, LI Y D, WEI X, et al. Fatigue life prediction of welded joints with artificial corrosion pits based on continuum damage mechanics[J]. Journal of Constructional Steel Research, 2018, 148: 542-550.
    [41]
    VAN DO V N, LEE C H, CHANG K H. High cycle fatigue analysis in presence of residual stresses by using a continuum damage mechanics model[J]. International Journal of Fatigue, 2015, 70: 51-62.
    [42]
    SUSMEL L, TAYLOR D. A critical distance/plane method to estimate finite life of notched components under variable amplitude uniaxial/multiaxial fatigue loading[J]. International Journal of Fatigue, 2012, 38: 7-24.
    [43]
    SUSMEL L, TAYLOR D. The Theory of Critical Distances to estimate lifetime of notched components subjected to variable amplitude uniaxial fatigue loading[J]. International Journal of Fatigue, 2011, 33(7): 900-911.
    [44]
    AL ZAMZAMI I, SUSMEL L. On the use of hot-spot stresses, effective Notch stresses and the Point Method to estimate lifetime of inclined welds subjected to uniaxial fatigue loading[J]. International Journal of Fatigue, 2018, 117: 432-449.
    [45]
    AL ZAMZAMI I, DAVISON B, SUSMEL L. Nominal and local stress quantities to design aluminium-to-steel thin welded joints against fatigue[J]. International Journal of Fatigue, 2019, 123: 279-295.
    [46]
    BERTO F. Fatigue and fracture assessment of notched components by means of the Strain Energy Density[J]. Engineering Fracture Mechanics, 2016, 167: 176-187.
    [47]
    MENEGHETTI G, CAMPAGNOLO A, BERTO F, et al. Notched Ti-6Al-4V titanium bars under multiaxial fatigue: synthesis of crack initiation life based on the averaged strain energy density[J]. Theoretical and Applied Fracture Mechanics, 2018, 96: 509-533.
    [48]
    MENEGHETTI G, CAMPAGNOLO A, BABINI V, et al. Multiaxial fatigue assessment of welded steel details according to the peak stress method: industrial case studies[J]. International Journal of Fatigue, 2019, 125: 362-380.
    [49]
    MENEGHETTI G, DE MARCHI A, CAMPAGNOLO A. Assessment of root failures in tube-to-flange steel welded joints under torsional loading according to the Peak Stress Method[J]. Theoretical and Applied Fracture Mechanics, 2016, 83: 19-30.
    [50]
    CAMPAGNOLO A, MENEGHETTI G, BERTO F, et al. Crack initiation life in notched steel bars under torsional fatigue: synthesis based on the averaged strain energy density approach[J]. International Journal of Fatigue, 2017, 100: 563-574.
    [51]
    GLINKA G. Effect of residual stresses on fatigue crack growth in steel weldments under constant and variable amplitude loads[M]//Fracture Mechanics. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 2009: 198.
    [52]
    ELBER W. The significance of fatigue crack closure[M]//NEWMAN J C, ELBER W., Eds. Damage Tolerance in Aircraft Structures. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 2009: 230.
    [53]
    KANG M K, ZHANG M X, ZHU M. In situ observation of bainite growth during isothermal holding[J]. Acta Materialia, 2006, 54(8): 2121-2129.
    [54]
    MA Y E, STARON P, FISCHER T, et al. Size ef-fects on residual stress and fatigue crack growth in friction stir welded 2195-T8 aluminium - Part I: Experiments[J]. International Journal of Fatigue, 2011, 33(11): 1417-1425.
    [55]
    LILJEDAHL C D M, ZANELLATO O, FITZPATR-ICK M E, et al. The effect of weld residual stresses and their re-distribution with crack growth during fatigue under constant amplitude loading[J]. International Journal of Fatigue, 2010, 32(4): 735-743.
    [56]
    LILJEDAHL C D M, BROUARD J, ZANELLATO O, et al. Weld residual stress effects on fatigue crack growth behaviour of aluminium alloy 2024-T351[J]. International Journal of Fatigue, 2009, 31(6): 1081-1088.
    [57]
    RONEVICH J A, SONG E J, FENG Z L, et al. Fatigue crack growth rates in high pressure hydrogen gas for multiple X100 pipeline welds accounting for crack location and residual stress[J]. Engineering Fracture Mechanics, 2020, 228: 106846.
  • Related Articles

    [1]PENG Chentao, XU Lianyong, ZHAO Lei, HAN Yongdian. Influence of Geometric Characteristics on Fatigue Behavior and Life Evaluation of Deep-water Platform Welding Structures[J]. Development and Application of Materials, 2023, 38(5): 24-30,43.
    [2]CHAI Xiyang, MU Xiaobiao, LUO Xiaobing, CHAI Feng, XU Kuilong. Comparative Study on Fatigue Properties of Al-Al-steel and Al-Ti-steel Clad Plates[J]. Development and Application of Materials, 2022, 37(6): 32-38.
    [3]CHENG Yingjin, DING Penglong. Analysis on Fatigue and Fracture Properties of High-strength Structural Steel and its Welded Joint Heat Affected Zone[J]. Development and Application of Materials, 2021, 36(5): 67-71,93.
    [4]CHENG Yingjin, WANG Tao, XUE Gang, WANG Renfu. The Statistical analysis on the Paris's Fatigue Model Parameters and Prediction on Fatigue Crack Growth Life of 10Ni5CrMoV Steel and Its Joint[J]. Development and Application of Materials, 2019, 34(1): 1-6. DOI: 10.19515/j.cnki.1003-1545.2019.01.001
    [5]WANG Zuhua, LI Chong, XUE Gang, GONG Xuhui, ZHENG Wenjian. Influence of Welding Methods on Fatigue Properties of 10Ni5CrMoV Steel Welded Joints[J]. Development and Application of Materials, 2017, 32(3): 1-4. DOI: 10.19515/j.cnki.1003-1545.2017.03.001
    [6]ZHENG Guo-hua, SONG Xiao-long, ZHAO Yang. Study on Fatigue Strength of 2Cr11Mo1NiWVNbN Steel for Turbine Blades[J]. Development and Application of Materials, 2014, 29(4): 8-13. DOI: 10.19515/j.cnki.1003-1545.2014.04.002
    [7]WEN Ai-ling, WANG Sheng-wu, YANG Jun-yong, REN Rui-ming. Influence of High-energy Peening Surface Nano-crystallization on Fatigue Life of Pure Titanium[J]. Development and Application of Materials, 2007, 22(4): 11-14. DOI: 10.19515/j.cnki.1003-1545.2007.04.004
    [8]YANG Yan-tao, ZHANG Yong-yang, YU Wei. Property of Titanium Alloy Welded Joints Treated with Ultrasonic Peening[J]. Development and Application of Materials, 2007, 22(1): 28-32. DOI: 10.19515/j.cnki.1003-1545.2007.01.008
    [9]WANG Xiao-hua, XIN Bao, SHI Jin. Welding Test of Aluminum Alloy-steel Transition Joint[J]. Development and Application of Materials, 2006, 21(5): 21-23. DOI: 10.19515/j.cnki.1003-1545.2006.05.008
    [10]Ma Jianmin, ‚Li Jingyong. Effect of Weld Defects on the Fatigue of Aluminum Alloy Joint[J]. Development and Application of Materials, 2003, 18(6): 31-34. DOI: 10.19515/j.cnki.1003-1545.2003.06.009
  • Cited by

    Periodical cited type(2)

    1. 蒋寒斌,郭俊华,童宗鹏. 一种用于船用复合材料疲劳寿命预测的应力场强法. 舰船科学技术. 2025(01): 18-23 .
    2. 徐继鑫,窦飞,桂志远,李明君,聂春戈. 基于主S-N曲线法的板边焊接接头疲劳评估. 计算机辅助工程. 2024(04): 44-48 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (183) PDF downloads (47) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return