Citation: | SUN Miao, YANG Qian, HUA Wenjuan, ZHANG Jianxun. Microstructure and Performance Evolution of Heat-Treated ZrO2/AlSi10Mg Composites Processed by Selective Laser Melting[J]. Development and Application of Materials, 2024, 39(1): 38-46. |
[1] |
秦艳利, 孙博慧, 张昊, 等. 选区激光熔化铝合金及其复合材料在航空航天领域的研究进展[J]. 中国激光, 2021, 48(14): 1402002.
|
[2] |
邹田春, 欧尧, 祝贺, 等. 激光选区熔化AlSi7Mg合金的微观组织和力学性能[J]. 材料导报, 2020, 34(10)10098-10102
|
[3] |
唐光东, 冯涛, 段国庆, 等. AlSi7Mg合金选区激光熔化工艺及性能研究[J]. 铸造技术, 2020, 41(3): 219-222.
|
[4] |
王孟, 杨永强, Vyacheslav Trofimov, 等. 粉末粒径对AlSi10Mg合金选区激光熔化成形的影响[J]. 金属学报, 2023, 59(1): 147-156.
|
[5] |
闫泰起, 唐鹏钧, 陈冰清, 等. 退火温度对激光选区熔化AlSi10Mg合金微观组织及拉伸性能的影响[J]. 机械工程学报, 2020, 56(8): 37-45.
|
[6] |
侯伟, 陈静, 储松林, 等. 选区激光熔化成形AlSi10Mg组织与拉伸性能的各向异性研究[J]. 中国激光, 2018, 45(7): 0702003.
|
[7] |
孙兵兵, 房立家, 张学军. 激光选区熔化AlSi10Mg工艺优化及显微组织研究[J]. 焊接技术, 2020, 49(2): 5-8.
|
[8] |
帅三三, 林鑫, 肖武泉, 等. 横向静磁场对激光熔化增材制造Al-12%Si合金凝固组织的影响[J]. 金属学报, 2018, 54(6): 918-926.
|
[9] |
孙靖, 吴俊, 朱忠良, 等. 激光能量密度对选区激光熔化成形Al4SiC4/AlSi10Mg复合材料显微组织的影响[J]. 机械工程材料, 2022, 46(8): 68-74.
|
[10] |
YANASE Y, MIYAUCHI H, MATSUMOTO H, et al. Hierarchical analysis of phase constituent and mechanical properties of AlSi10Mg/SiC composite produced by laser-based powder bed fusion[J]. Materials Transactions, 2023, 64(6): 1125-1134.
|
[11] |
WANG Z Y, ZHUO L C, YIN E H, et al. Microstructure evolution and properties of nanoparticulate SiC modified AlSi10Mg alloys[J]. Materials Science and Engineering: A, 2021, 808: 140864.
|
[12] |
ZHANG S Z, WEI P, CHEN Z, et al. Graphene/ZrO2/aluminum alloy composite with enhanced strength and ductility fabricated by laser powder bed fusion[J]. Journal of Alloys and Compounds, 2022, 910: 164941.
|
[13] |
LUO S X, LI R F, HE P Y, et al. Investigation on the microstructure and mechanical properties of CNTs-AlSi10Mg composites fabricated by selective laser melting[J]. Materials, 2021, 14(4): 838.
|
[14] |
饶项炜, 顾冬冬, 席丽霞. 选区激光熔化成形碳纳米管增强铝基复合材料成形机制及力学性能研究[J]. 机械工程学报, 2019, 55(15): 1-9.
|
[15] |
ZHANG Y Y, LI X D. Bioinspired, graphene/Al2O3 doubly reinforced aluminum composites with high strength and toughness[J]. Nano Letters, 2017, 17(11): 6907-6915.
|
[16] |
张堃, 吴姚莎, 刘晓飞, 等. TiB2/AlSi10Mg选区激光熔化成形组织与性能[J]. 有色金属工程, 2021, 11(12): 43-49.
|
[17] |
荣婷, 任治倪, 曾志强, 等. 选区激光熔化高强铝合金TiB2/AlSi10Mg显微组织及力学性能研究[J]. 应用激光, 2020, 40(6): 1017-1022.
|
[18] |
WU K W, MA S M, FANG X, et al. Microstructure and mechanical properties of an in situ TiB2 particle reinforced AlSi10Mg composite additive manufactured by selective electron beam melting[J].Journal of Materials Science, 2023, 58(19): 7915-7929.
|
[19] |
YUAN P P, GU D D. Molten pool behaviour and its physical mechanism during selective laser melting of TiC/AlSi10Mg nanocomposites: simulation and experiments[J]. Journal of Physics D: Applied Physics, 2015, 48(3): 035303.
|
[20] |
GAO C, LIU Z, XIAO Z, et al. Effect of heat treatment on SLM-fabricated TiN/AlSi10Mg composites: Microstructural evolution and mechanical properties[J]. Journal of Alloys and Compounds, 2021, 853: 156722.
|
[21] |
李冲. 铝合金中Mg2Si相演变行为及析出长大机制的研究[D]. 济南: 山东大学, 2012.
|
[22] |
龙慧池. Al-Si-(Mg)合金热处理对微观结构与宏观性能的影响[D]. 长沙: 湖南大学, 2013.
|
[23] |
TAN Q Y, ZHANG J Q, NING M, et al. A novel method to 3D-print fine-grained AlSi10Mg alloy with isotropic properties via inoculation with LaB6 nanoparticles[J]. Additive Manufacturing, 2020, 32: 101034.
|
[1] | ZHANG Congyi, LI Chunhui, LI Zhihao, ZHANG Jiaqi, LIU Pan, ZHANG Xinyao. Application of Electrolysis Method in Metallographic Test for Large-Sized Samples[J]. Development and Application of Materials, 2024, 39(6): 98-105. |
[2] | DAI Le, LI Longteng. Study on Microstructure and Properties of Titanium/Steel Hybrid Bonding Interface[J]. Development and Application of Materials, 2024, 39(3): 36-41. |
[3] | WANG Jiani, LIU Hongyu, HAN Yue, ZHEN Guanghao, SHI Meihui. Introduction of Humidity Resistance Test Standards of Coatings[J]. Development and Application of Materials, 2021, 36(4): 51-56. |
[4] | LIU Pan, DU Mifang, ZHANG Binbin, LI Jingbin. Comments on the Revision of the Standard GB/T 4949 Chemical Analysis Methods for Sacrificial Anodes of Al-Zn-In System Alloy[J]. Development and Application of Materials, 2019, 34(5): 88-94. DOI: 10.19515/j.cnki.1003-1545.2019.05.018 |
[5] | LIU Zhang-xi, ZHOU Zhen-gong, ZHANG Bo-ming, WANG Xiao-hong, BAI Guang-hui. The Research on the Compressive Strength Test Method for Lamination Connecting Structure[J]. Development and Application of Materials, 2014, 29(2): 50-54. DOI: 10.19515/j.cnki.1003-1545.2014.02.014 |
[6] | CHEN Zheng-long, HU Hong-wei, HOU Shi-zhong, WANG Chun-fen. Investigation of Several Common Methods for Asbestos Detection[J]. Development and Application of Materials, 2013, 28(5): 89-94. DOI: 10.19515/j.cnki.1003-1545.2013.05.021 |
[7] | KANG Feng-hui, WU Yi-bo, YANG Rui-rui. Research on Effects Connection Joints on the Vibration Reduction of Composite Stand[J]. Development and Application of Materials, 2013, 28(5): 59-63. DOI: 10.19515/j.cnki.1003-1545.2013.05.015 |
[8] | ZHENG Yong-hong. Effect of Weaving Method on the Fabric Property[J]. Development and Application of Materials, 2013, 28(4): 70-74. DOI: 10.19515/j.cnki.1003-1545.2013.04.015 |
[9] | Ma Fengcang, Ni Feng, Yang Dixin. The Present Situation of Preparation Methods of CuCr Alloy Materials[J]. Development and Application of Materials, 2002, 17(3): 35-38. DOI: 10.19515/j.cnki.1003-1545.2002.03.010 |
[10] | Wang Yonghua, Yang Bo. The Antiseptic Testing Methods of Nano-structure Material against Microorganism[J]. Development and Application of Materials, 2001, 16(1): 30-32. DOI: 10.19515/j.cnki.1003-1545.2001.01.008 |
1. |
韩笑. 新型复合材料管道在给排水系统中的耐久性能研究. 中国战略新兴产业. 2024(09): 109-111 .
![]() |