Volume 39 Issue 1
Feb.  2024
Turn off MathJax
Article Contents
SUN Miao, YANG Qian, HUA Wenjuan, ZHANG Jianxun. Microstructure and Performance Evolution of Heat-Treated ZrO2/AlSi10Mg Composites Processed by Selective Laser Melting[J]. Development and Application of Materials, 2024, 39(1): 38-46.
Citation: SUN Miao, YANG Qian, HUA Wenjuan, ZHANG Jianxun. Microstructure and Performance Evolution of Heat-Treated ZrO2/AlSi10Mg Composites Processed by Selective Laser Melting[J]. Development and Application of Materials, 2024, 39(1): 38-46.

Microstructure and Performance Evolution of Heat-Treated ZrO2/AlSi10Mg Composites Processed by Selective Laser Melting

  • Received Date: 2023-11-03
  • AlSi10Mg is the most commonly used aluminum alloy material for additive manufacturing, and its selective laser melting(SLM) products have been widely used in aerospace, automotive industry, and other fields. However, its low strength and plasticity limit its wide application. In this study, 0.3% (mass fraction) nano ZrO2 particles are added to AlSi10Mg alloy atomized powder, and the ZrO2/AlSi10Mg composite is formed by using the SLM technology. The microstructure, tensile property and anisotropic behavior are studied under different heat treatment regimes. The results show that when the annealing temperature rises from 180 ℃ to 270 ℃, the tensile strength decreases continuously, and the elongation first decreases and then increases. After being annealed at 180 ℃ for 2 hours, ZrO2/AlSi10Mg show the best match of strength and plasticity, with the tensile strength of 481.74 MPa, the yield strength of 331.03 MPa, and the elongation of 8.5%. In the process of annealing treatment, the ZrO2 ceramic particles in the composite material maintain a stable structure, and the phase transition is mainly the transition of the AlSi10Mg matrix. In addition, with the increase of annealing temperature, the proportion of large angle grain boundaries in the ZrO2/AlSi10Mg composite material significantly increases, and the average local misorientation decreases. When the ZrO2/AlSi10Mg composite is annealed at 180 ℃ for 2 hours, the tensile strength and elongation in the transverse and longitudinal sections are significantly better than those of the corresponding sections of the AlSi10Mg alloy.

     

  • loading
  • [1]
    秦艳利, 孙博慧, 张昊, 等. 选区激光熔化铝合金及其复合材料在航空航天领域的研究进展[J]. 中国激光, 2021, 48(14): 1402002.
    [2]
    邹田春, 欧尧, 祝贺, 等. 激光选区熔化AlSi7Mg合金的微观组织和力学性能[J]. 材料导报, 2020, 34(10)10098-10102
    [3]
    唐光东, 冯涛, 段国庆, 等. AlSi7Mg合金选区激光熔化工艺及性能研究[J]. 铸造技术, 2020, 41(3): 219-222.
    [4]
    王孟, 杨永强, Vyacheslav Trofimov, 等. 粉末粒径对AlSi10Mg合金选区激光熔化成形的影响[J]. 金属学报, 2023, 59(1): 147-156.
    [5]
    闫泰起, 唐鹏钧, 陈冰清, 等. 退火温度对激光选区熔化AlSi10Mg合金微观组织及拉伸性能的影响[J]. 机械工程学报, 2020, 56(8): 37-45.
    [6]
    侯伟, 陈静, 储松林, 等. 选区激光熔化成形AlSi10Mg组织与拉伸性能的各向异性研究[J]. 中国激光, 2018, 45(7): 0702003.
    [7]
    孙兵兵, 房立家, 张学军. 激光选区熔化AlSi10Mg工艺优化及显微组织研究[J]. 焊接技术, 2020, 49(2): 5-8.
    [8]
    帅三三, 林鑫, 肖武泉, 等. 横向静磁场对激光熔化增材制造Al-12%Si合金凝固组织的影响[J]. 金属学报, 2018, 54(6): 918-926.
    [9]
    孙靖, 吴俊, 朱忠良, 等. 激光能量密度对选区激光熔化成形Al4SiC4/AlSi10Mg复合材料显微组织的影响[J]. 机械工程材料, 2022, 46(8): 68-74.
    [10]
    YANASE Y, MIYAUCHI H, MATSUMOTO H, et al. Hierarchical analysis of phase constituent and mechanical properties of AlSi10Mg/SiC composite produced by laser-based powder bed fusion[J]. Materials Transactions, 2023, 64(6): 1125-1134.
    [11]
    WANG Z Y, ZHUO L C, YIN E H, et al. Microstructure evolution and properties of nanoparticulate SiC modified AlSi10Mg alloys[J]. Materials Science and Engineering: A, 2021, 808: 140864.
    [12]
    ZHANG S Z, WEI P, CHEN Z, et al. Graphene/ZrO2/aluminum alloy composite with enhanced strength and ductility fabricated by laser powder bed fusion[J]. Journal of Alloys and Compounds, 2022, 910: 164941.
    [13]
    LUO S X, LI R F, HE P Y, et al. Investigation on the microstructure and mechanical properties of CNTs-AlSi10Mg composites fabricated by selective laser melting[J]. Materials, 2021, 14(4): 838.
    [14]
    饶项炜, 顾冬冬, 席丽霞. 选区激光熔化成形碳纳米管增强铝基复合材料成形机制及力学性能研究[J]. 机械工程学报, 2019, 55(15): 1-9.
    [15]
    ZHANG Y Y, LI X D. Bioinspired, graphene/Al2O3 doubly reinforced aluminum composites with high strength and toughness[J]. Nano Letters, 2017, 17(11): 6907-6915.
    [16]
    张堃, 吴姚莎, 刘晓飞, 等. TiB2/AlSi10Mg选区激光熔化成形组织与性能[J]. 有色金属工程, 2021, 11(12): 43-49.
    [17]
    荣婷, 任治倪, 曾志强, 等. 选区激光熔化高强铝合金TiB2/AlSi10Mg显微组织及力学性能研究[J]. 应用激光, 2020, 40(6): 1017-1022.
    [18]
    WU K W, MA S M, FANG X, et al. Microstructure and mechanical properties of an in situ TiB2 particle reinforced AlSi10Mg composite additive manufactured by selective electron beam melting[J].Journal of Materials Science, 2023, 58(19): 7915-7929.
    [19]
    YUAN P P, GU D D. Molten pool behaviour and its physical mechanism during selective laser melting of TiC/AlSi10Mg nanocomposites: simulation and experiments[J]. Journal of Physics D: Applied Physics, 2015, 48(3): 035303.
    [20]
    GAO C, LIU Z, XIAO Z, et al. Effect of heat treatment on SLM-fabricated TiN/AlSi10Mg composites: Microstructural evolution and mechanical properties[J]. Journal of Alloys and Compounds, 2021, 853: 156722.
    [21]
    李冲. 铝合金中Mg2Si相演变行为及析出长大机制的研究[D]. 济南: 山东大学, 2012.
    [22]
    龙慧池. Al-Si-(Mg)合金热处理对微观结构与宏观性能的影响[D]. 长沙: 湖南大学, 2013.
    [23]
    TAN Q Y, ZHANG J Q, NING M, et al. A novel method to 3D-print fine-grained AlSi10Mg alloy with isotropic properties via inoculation with LaB6 nanoparticles[J]. Additive Manufacturing, 2020, 32: 101034.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (50) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return