XU Shanshan, HUANG Dongya, ZHENG Jingdong, YANG Dongjie, MA Zhichao. Research Progress of Carbon Fiber Reinforced PEEK Composites[J]. Development and Application of Materials, 2021, 36(5): 83-88.
Citation: XU Shanshan, HUANG Dongya, ZHENG Jingdong, YANG Dongjie, MA Zhichao. Research Progress of Carbon Fiber Reinforced PEEK Composites[J]. Development and Application of Materials, 2021, 36(5): 83-88.

Research Progress of Carbon Fiber Reinforced PEEK Composites

More Information
  • Received Date: June 01, 2021
  • In recent years, carbon fiber reinforced thermoplastic composites(CFRTP), especially carbon fiber reinforced polyether ether ketone(CF/PEEK) composites, have received a lot of attention due to their excellent comprehensive properties. High performance polyether ether ketone composites has many advantages, such as excellent strength and stiffness, good toughness, high temperature resistance, making it widely used in aerospace, machinery, electrical, automotive and biological engineering fields. The research progress of carbon fiber reinforced polyether ether ketone composites in the aspects of interfacial properties, mechanical properties, biocompatibility, forming process and failure mechanism were reviewed, which laid a foundation for the preparation technology research and industrial application of the materials.
  • [1]
    林有希, 高诚辉.碳纤维增强聚醚醚酮复合材料的研究及应用[J].塑料工业, 2005, 33(10):5-8.
    [2]
    赵文砚.聚醚醚酮纤维/碳纤维针刺毡及复合材料的制备与性能研究[D].长春:吉林大学, 2019.
    [3]
    HASSAN E A M, GE D T, YANG LL, et al.Highly boosting the interlaminar shear strength of CF/PEEK composites via introduction of PEKK onto activated CF[J].Composites Part A:Applied Science and Manufacturing, 2018, 112:155-160.
    [4]
    WANG S D, YANG Y C, MU Y F, et al.Synergy of electrochemical grafting andcrosslinkable crystalline sizing agent to enhance the interfacial strength of carbon fiber/PEEK composites[J].Composites Science and Technology, 2021, 203:108562.
    [5]
    CHEN J L, WANG K, ZHAO Y.Enhanced interfacial interactions of carbon fiber reinforced PEEK composites by regulating PEI andgraphene oxide complex sizing at the interface[J].Composites Science and Technology, 2018, 154:175-186.
    [6]
    LIU H S, ZHAO Y, LI N, et al.Enhanced interfacial strength of carbon fiber/PEEK composites using a facile approach via PEI&ZIF-67 synergistic modification[J].Journal of Materials Research and Technology, 2019, 8(6):6289-6300.
    [7]
    PAN L, YAPICI U.A comparative study on mechanical properties of carbon fiber/PEEK composites[J].Advanced Composite Materials, 2016, 25(4):359-374.
    [8]
    STEINBERG E L, RATH E, SHLAIFER A, et al.Carbon fiber reinforced PEEK Optima-A composite material biomechanical properties and wear/debris characteristics of CF-PEEK composites for orthopedic trauma implants[J].Journal of the Mechanical Behavior of Biomedical Materials, 2013, 17:221-228.
    [9]
    GARCIA-GONZALEZ D, RODRIGUEZ-MILLAN M, RUSINEK A, et al.Investigation of mechanical impact behavior of short carbon-fiber-reinforced PEEK composites[J].Composite Structures, 2015, 133:1116-1126.
    [10]
    GODARA A, RAABE D, GREEN S.The influence of sterilization processes on the micromechanical properties of carbon fiber-reinforced PEEK composites for bone implant applications[J].Acta Biomaterialia, 2007, 3(2):209-220.
    [11]
    SHI R, ZHANG J S, LI W Y, et al.An effective surface modification strategy to boost PEEKosteogenesis using porous CaP generated in well-tuned collagen matrix[J].Applied Surface Science, 2021, 555:149571.
    [12]
    DEVINE D M, HAHN J, RICHARDS R G, et al.Coating of carbon fiber-reinforcedpolyetheretherketone implants with titanium to improve bone apposition[J].Journal of Biomedical Materials Research Part B:Applied Biomaterials, 2013, 101B(4):591-598.
    [13]
    LUO H L, XIONG G Y, YANG Z W, et al.Preparation of three-dimensional braided carbon fiber-reinforced PEEK composites for potential load-bearing bone fixations.Part I.Mechanical properties andcytocompatibility[J].Journal of the Mechanical Behavior of Biomedical Materials, 2014, 29:103-113.
    [14]
    许治平.高性能连续纤维增强聚醚醚酮复合材料的制备及性能研究[D].长春:吉林大学, 2017.
    [15]
    JI C M, WANG B, HU J Q, et al.Effect of different preparation methods on mechanical behaviors of carbon fiber-reinforced PEEK-Titanium hybrid laminates[J].Polymer Testing, 2020, 85:106462.
    [16]
    周华民, 蒋维, 黄志高, 等.一种连续碳纤维增强聚醚醚酮复合材料的制备方法及产品:CN108047470A[P].2018-05-18.
    [17]
    单毫, 陈宇, 李俊杰, 等.红外加热缠绕成型工艺参数对CF/PEEK复合材料层间剪切性能的影响[J].复合材料科学与工程, 2020(1):39-46.
    [18]
    HOSSEINI S M A, BARAN I, AKKERMAN R.Thermal modeling strategies for laser assisted tape winding(latw) process[C].21st International Conference on Composite Materials, 2017.
    [19]
    HAN X T, YANG D, YANG CC, et al.Carbon fiber reinforced PEEK composites based on 3D-printing technology for orthopedic and dental applications[J].Journal of Clinical Medicine, 2019, 8(2):240.
    [20]
    STEPASHKIN АА, CHUKOV D I, SENATOV F S, et al.3D-printed PEEK-carbon fiber (CF) composites:Structure and thermal properties[J].Composites Science and Technology, 2018, 164:319-326.
    [21]
    LUO M, TIAN X Y, SHANG J F, et al.Bi-scale interfacial bond behaviors of CCF/PEEK composites by plasma-laser cooperatively assisted 3D printing process[J].Composites Part A:Applied Science and Manufacturing, 2020, 131:105812.
    [22]
    FUJIHARA K, HUANG Z M, RAMAKRISHNA S, et al.Influence of processing conditions on bending property of continuous carbon fiber reinforced PEEK composites[J].Composites Science and Technology, 2004, 64(16):2525-2534.
    [23]
    牛一凡, 杨赢, 姚佳伟.环境温度对碳纤维/聚醚醚酮复合材料拉伸性能及疲劳寿命的影响[J].宇航材料工艺, 2016, 46(2):63-67.
    [24]
    BONNHEIM N, ANSARI F, REGIS M, et al.Effect of carbon fiber type on monotonic and fatigue properties of orthopedic grade PEEK[J].Journal of the Mechanical Behavior of Biomedical Materials, 2019, 90:484-492.
    [25]
    DU DD, HU Y B, LI H G, et al.Open-hole tensile progressive damage and failure prediction of carbon fiber-reinforced PEEK-titanium laminates[J].Composites Part B:Engineering, 2016, 91:65-74.
    [26]
    CHEN C Y, ZHANG C, LIU C L, et al.Rate-dependent tensile failure behavior of short fiber reinforced PEEK[J].Composites Part B:Engineering, 2018, 136:187-196.
  • Related Articles

    [1]LIU Gang, DING Penglong, GAO Zhenpeng. Influence of E36 Steel Plate Components on the Toughness of Submerged Arc Welding Joint[J]. Development and Application of Materials, 2021, 36(3): 74-77.
    [2]WANG Xiaolian, WANG Qingyun, WANG Yabin. Developing of Flux of Stainless Steel Containing Nb or Ti for Wire Electrode Submerged Arc Welding[J]. Development and Application of Materials, 2019, 34(6): 70-73. DOI: 10.19515/j.cnki.1003-1545.2019.06.014
    [3]WANG Qingyun, MA Mingliang, KANG Tianyou, SUN Zhenzhen. Development of Seamless Flux Cored Submerged Arc Welding Wire for High Strength Steel With Yield Strength Grade of 690 MPa[J]. Development and Application of Materials, 2019, 34(6): 64-69. DOI: 10.19515/j.cnki.1003-1545.2019.06.013
    [4]WANG Xiaolian, WANG Qingyun. Affect of Agglomerated Flux's SiO2 Content on Slag Removal Performance of Submerged Arc Welding of Stainless Steel Containing Ti and Nb[J]. Development and Application of Materials, 2018, 33(5): 33-36. DOI: 10.19515/j.cnki.1003-1545.2018.05.006
    [5]YANG Dan-dan, WANG Xiao-zhen. Research on the Submerged Arc Welding of Stainless Steel 06Cr19Ni10 and Steel Q235[J]. Development and Application of Materials, 2013, 28(3): 40-43. DOI: 10.19515/j.cnki.1003-1545.2013.03.010
    [6]WANG Xiao-lian, MA Ming-liang, WANG Qing-yun. Development of a Agglomerated Flux for Stainless Steel Submerged Arc Welding[J]. Development and Application of Materials, 2012, 27(1): 21-24. DOI: 10.19515/j.cnki.1003-1545.2012.01.005
    [7]QU Zhan-yuan. Influence of Heat Input on Low Temperature Toughness of Submerged Arc Welding Seam on Marine E36 Steel[J]. Development and Application of Materials, 2010, 25(4): 7-9. DOI: 10.19515/j.cnki.1003-1545.2010.04.002
    [8]YANG Xiu-zhi, HUO Guang-rui, YU Sheng-fu, FU Xiu-juan. CTOD Experimental Study of Twin-wire Submerged Arc Welded Joint of High-strength Hull Steel[J]. Development and Application of Materials, 2009, 24(6): 1-5. DOI: 10.19515/j.cnki.1003-1545.2009.06.001
    [9]WANG Ming-lin, XIE Di-ming, WANG Jun-min, ZHANG Cheng-jie. Improvement of D40M Wire for Submerged Arc Welding[J]. Development and Application of Materials, 2006, 21(2): 14-17. DOI: 10.19515/j.cnki.1003-1545.2006.02.004
    [10]LIU Gang, YAO Run-gang, KONG Hong-yu, ZHOU Hao. Effect of Nb and Ti on the Microstructure and Toughness of Sub-merged Melt Welding Joint of Continuous Casting 10MnNiCr Steel[J]. Development and Application of Materials, 2005, 20(1): 9-12,22. DOI: 10.19515/j.cnki.1003-1545.2005.01.003

Catalog

    Article Metrics

    Article views (551) PDF downloads (101) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return