FANG Dong, CHEN Ji-zhi. Finite Element Analysis of Stress Concentration at the Root of Screw Thread of High Strength Bolt[J]. Development and Application of Materials, 2007, 22(2): 37-39. DOI: 10.19515/j.cnki.1003-1545.2007.02.010
Citation: FANG Dong, CHEN Ji-zhi. Finite Element Analysis of Stress Concentration at the Root of Screw Thread of High Strength Bolt[J]. Development and Application of Materials, 2007, 22(2): 37-39. DOI: 10.19515/j.cnki.1003-1545.2007.02.010

Finite Element Analysis of Stress Concentration at the Root of Screw Thread of High Strength Bolt

More Information
  • Received Date: November 19, 2006
  • Available Online: March 29, 2024
  • The influence of the radius of rounded corner at the root of thread,depth of thread and thread pitch on the stress con-centration at the root of screw thread was investigateal for the high strength bolt by means of finite element analysis.The results showed that the concentrated stress is obviously reduced as the radius of rounded corner at the root of thread and the depth of thread increase,while the effect of thread pitch is unconspicuous.
  • Related Articles

    [1]GAO Yuhao, WANG Jia, WU Zepeng, CHEN Pei, ZHAI Jianfei. Study on Crack Curvature Correction Method in Fatigue Crack Growth Rate Test[J]. Development and Application of Materials, 2023, 38(2): 10-15.
    [2]WANG Desheng, WANG Zhenghong, WANG Pengyun, ZHANG Fanxing, CHU Shaoqi, LI Li, XIE Shufeng, FENG Yan. Microstructures and Fatigue Crack Growth Rates of Domestic and Imported 5083-H116 Aliuminum Alloy[J]. Development and Application of Materials, 2021, 36(5): 20-29.
    [3]ZHANG Yajun, ZHANG Xinyao, ZHANG Yunhao. Pertinence of Material Constants in Paris Model for Fatigue Crack Propagation Rate of Metallic Materials[J]. Development and Application of Materials, 2021, 36(4): 1-8.
    [4]ZHANG Yajun, ZHANG Xinyao, ZHANG Yunhao. Analysis on Application of Different Models for Fatigue Crack Propagation Rate of Metallic Materials[J]. Development and Application of Materials, 2021, 36(2): 88-92.
    [5]WANG Yuan, FEI Qiqi, ZHAO Cong, WANG Qiang, ZHANG Tianhui. Effect of Load on Fatigue Crack Growth of ADB610 Steel[J]. Development and Application of Materials, 2018, 33(1): 20-24. DOI: 10.19515/j.cnki.1003-1545.2018.01.005
    [6]WU Chunxue, ZHANG Yongfeng, REN Fangjie. Study on Fatigue Crack Growth Rate of High Pressure Vessel Steel[J]. Development and Application of Materials, 2016, 31(1): 27-29. DOI: 10.19515/j.cnki.1003-1545.2016.01.006
    [7]CHANG Lei, DENG Chun-feng, REN Fang-jie, SHAO Fei, WU Chun-xue, MEI Peng-cheng. Numerical Simulation of Fatigue Crack Growth on the Pressure Vessel’s Surface[J]. Development and Application of Materials, 2013, 28(5): 95-100. DOI: 10.19515/j.cnki.1003-1545.2013.05.022
    [8]HAN Feng, ZHANG Ya-jun, ZHANG Li-juan, GAO Ling-qing. Test Study on Low Cycle Fatigue Surface Crack Propagation Rate for Pressure Vessel Steel[J]. Development and Application of Materials, 2011, 26(4): 56-59,89. DOI: 10.19515/j.cnki.1003-1545.2011.04.012
    [9]ZHANG Ya-jun. Interferential Factors in Elastic Modulus Measurement of Three-point Bend Specimen with Compliance Method[J]. Development and Application of Materials, 2005, 20(5): 33-36. DOI: 10.19515/j.cnki.1003-1545.2005.05.011
    [10]Yuan Jingsong. Approximate Calculation of Crack Propagation Rate of Metal Corrosion Fatigue[J]. Development and Application of Materials, 2000, 15(2): 26-29. DOI: 10.19515/j.cnki.1003-1545.2000.02.007
  • Cited by

    Periodical cited type(1)

    1. 何欢. 多孔焊接件钻孔专用机床机械系统设计与应用. 今日制造与升级. 2025(01): 43-45 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (53) PDF downloads (10) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return