XUE Gang, GONG Xu-hui, WANG Tao, FANG Hong-yuan, GAO Zhen-peng. Mechanical Constitutive Relation under Cyclic Loading of 0Cr18Ni24Mo6N Weld Metal[J]. Development and Application of Materials, 2015, 30(5): 1-7. DOI: 10.19515/j.cnki.1003-1545.2015.05.001
Citation: XUE Gang, GONG Xu-hui, WANG Tao, FANG Hong-yuan, GAO Zhen-peng. Mechanical Constitutive Relation under Cyclic Loading of 0Cr18Ni24Mo6N Weld Metal[J]. Development and Application of Materials, 2015, 30(5): 1-7. DOI: 10.19515/j.cnki.1003-1545.2015.05.001

Mechanical Constitutive Relation under Cyclic Loading of 0Cr18Ni24Mo6N Weld Metal

More Information
  • Received Date: April 13, 2015
  • Available Online: March 20, 2024
  • Cyclic loading tests with variable strain amplitudes were conducted on 0Cr18Ni24Mo6N weld metal and cyclic stressstrain behavior was analyzed. The results indicated that elastic modulus and yield stress both decreases linearly with increasing strain amplitude. Linear relationship was found between true stress and true strain logarithm in plastic deformation region. True stress and true strain met the single logarithm constitutive model in cyclic plastic deformation region and the parameters of this model for 0Cr18Ni24Mo6N weld metal were determined.
  • Related Articles

    [1]GUO Haodong, YANG Chaofei, SUN lei, WANG Renfu, ZHANG Yuxiang, HUANG Dong. Mechanical Behavior and its Intrinsic Model of 10CrNi5MoV Steel in Two-phase Region[J]. Development and Application of Materials, 2024, 39(6): 84-89.
    [2]LEI Yiwen, LIU Yan, ZHANG Qianwen, HE Wenbo, LI Xifeng. Research Progress on Constitutive Modeling and Simulation of Electrically-Assisted Forming of Titanium Alloys[J]. Development and Application of Materials, 2024, 39(4): 98-109.
    [3]HUANG Dong, WEI Mengfei, ZHANG Yuxiang, JIANG Ying, CHENG Bin. High Temperature Constitutive Equation Considering Strain Compensation of 12CrNi5MoV Forged Steel[J]. Development and Application of Materials, 2024, 39(2): 81-88.
    [4]ZHANG Baowei, GAO Zhenpeng, CHEN Xuelong, ZHANG Youjing, GONG Xuhui, DONG Xing. Dynamic Mechanical Characteristics and Constitutive Model of the 10Ni8CrMoV Steel HAZ[J]. Development and Application of Materials, 2022, 37(5): 68-72.
    [5]TONG Zhiyuan, GONG Xuhui. Physical Constitutive Model of Tensile Plastic Strain for 10CrNi8MoV Steel[J]. Development and Application of Materials, 2022, 37(5): 11-15.
    [6]XUE Gang. Correlation Analysis of Deformation Characteristics and Stress-strain Constitutive Relationship of Round-bar Specimens with Isotropic Homogenous Elasto-plastic Materials by Unidirectional Tensile Test[J]. Development and Application of Materials, 2022, 37(2): 24-36.
    [7]DAI Le, PENG Jixiang, GAO Zhenpeng, YANG Shu. Dynamic Mechanical Behavior and Constitutive Relation of 03Cr21Ni14Mn5Mo3N Stainless Steel[J]. Development and Application of Materials, 2021, 36(5): 5-9.
    [8]SUN Erju, QIU Shengwen, XU Feifan, LIU Zhiying. High Temperature Deformation Behavior and Constitutive Equations of TA22 Titanium Alloy[J]. Development and Application of Materials, 2020, 35(4): 6-10.
    [9]GAO Zhen-peng, XUE Gang, GONG Xu-hui. Constitutive Model of Stress-strain for 0Cr20Ni12Mn5Mo2NbN Steel under Cyclic Loading[J]. Development and Application of Materials, 2015, 30(6): 5-9. DOI: 10.19515/j.cnki.1003-1545.2015.06.002
    [10]XUE Gang, GONG Xu-hui, WANG Tao, FANG Hong-yuan. Mechanical Constitutive Relation under Cyclic Loading of 10Ni5CrMoV Steel[J]. Development and Application of Materials, 2015, 30(4): 5-11. DOI: 10.19515/j.cnki.1003-1545.2015.04.002

Catalog

    Article Metrics

    Article views (32) PDF downloads (2) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return