Citation: | TONG Zhiyuan, GONG Xuhui. Physical Constitutive Model of Tensile Plastic Strain for 10CrNi8MoV Steel[J]. Development and Application of Materials, 2022, 37(5): 11-15. |
[1] |
刘全坤. 材料成形基本原理[M]. 2版. 北京: 机械工业出版社, 2010.
|
[2] |
彭鸿博, 张宏建. 金属材料本构模型的研究进展[J]. 机械工程材料, 2012, 36(3): 5-10.
|
[3] |
GUO W G, NEMAT-NASSER S. Flow stress of Nitronic-50 stainless steel over a wide range of strain rates and temperatures[J]. Mechanics of Materials, 2006, 38(11): 1090-1103.
|
[4] |
NEMAT-NASSER S, GUO W G. Thermomechanical response of HSLA-65 steel plates: experiments and modeling[J]. Mechanics of Materials, 2005, 37(2-3): 379-405.
|
[5] |
VOYIADJIS G Z, ALMASRI A H. A physically based constitutive model for fcc metals with applications to dynamic hardness[J]. Mechanics of Materials, 2008, 40(6): 549-563.
|
[6] |
HULL D, BACON D J. Introduction to dislocations[J]. Materials Today, 2011, 14(10): 502.
|
[7] |
是晶, 张伟强, 郭金. 金属塑性变形的本构模型研究[J]. 材料导报, 2010, 24(4): 82-85.
|
[8] |
CAILLARD D. Kinetics of dislocations in pure Fe. Part II. in situ straining experiments at low temp-erature[J]. ActaMaterialia, 2010, 58(9): 3504-3515.
|
[9] |
严靖园, 余倩. 温度对体心立方钼中位错行为影响的原位透射电镜研究[J]. 电子显微学报, 2020, 39(4): 343-349.
|
[10] |
Kocks U F, Argon A S, Ashby M F. Thermodynamics and kinetics of slip[M]. England: Pergamon Press, 1975.
|
[11] |
潘晓霞, 余勇, 谭云, 等. FeCrNi合金静动态物理本构模型研究[J]. 力学学报, 2008, 40(3): 407-412.
|
[12] |
NEMAT-NASSER S, LI Y L. Flow stress of f.c.c. polycrystals with application to OFHC Cu[J]. ActaMaterialia, 1998, 46(2): 565-577.
|
[1] | GUO Haodong, YANG Chaofei, SUN lei, WANG Renfu, ZHANG Yuxiang, HUANG Dong. Mechanical Behavior and its Intrinsic Model of 10CrNi5MoV Steel in Two-phase Region[J]. Development and Application of Materials, 2024, 39(6): 84-89. |
[2] | LEI Yiwen, LIU Yan, ZHANG Qianwen, HE Wenbo, LI Xifeng. Research Progress on Constitutive Modeling and Simulation of Electrically-Assisted Forming of Titanium Alloys[J]. Development and Application of Materials, 2024, 39(4): 98-109. |
[3] | HUANG Dong, WEI Mengfei, ZHANG Yuxiang, JIANG Ying, CHENG Bin. High Temperature Constitutive Equation Considering Strain Compensation of 12CrNi5MoV Forged Steel[J]. Development and Application of Materials, 2024, 39(2): 81-88. |
[4] | ZHANG Baowei, GAO Zhenpeng, CHEN Xuelong, ZHANG Youjing, GONG Xuhui, DONG Xing. Dynamic Mechanical Characteristics and Constitutive Model of the 10Ni8CrMoV Steel HAZ[J]. Development and Application of Materials, 2022, 37(5): 68-72. |
[5] | XUE Gang. Correlation Analysis of Deformation Characteristics and Stress-strain Constitutive Relationship of Round-bar Specimens with Isotropic Homogenous Elasto-plastic Materials by Unidirectional Tensile Test[J]. Development and Application of Materials, 2022, 37(2): 24-36. |
[6] | LIU Jincai, WANG Peng, WANG Wenfei, DING Liang. Dynamic and Static Performance Calculation and Experimental Study of a Rubber Vibration Isolator[J]. Development and Application of Materials, 2022, 37(1): 33-38. |
[7] | ZHAI Zenggao, WANG Hongbo, HUANG Tao, CHEN Fuxiao. Hot Compression Tests on 20CrMnTi Steel[J]. Development and Application of Materials, 2016, 31(4): 70-75. DOI: 10.19515/j.cnki.1003-1545.2016.04.013 |
[8] | GAO Zhen-peng, XUE Gang, GONG Xu-hui. Constitutive Model of Stress-strain for 0Cr20Ni12Mn5Mo2NbN Steel under Cyclic Loading[J]. Development and Application of Materials, 2015, 30(6): 5-9. DOI: 10.19515/j.cnki.1003-1545.2015.06.002 |
[9] | XUE Gang, GONG Xu-hui, WANG Tao, FANG Hong-yuan, GAO Zhen-peng. Mechanical Constitutive Relation under Cyclic Loading of 0Cr18Ni24Mo6N Weld Metal[J]. Development and Application of Materials, 2015, 30(5): 1-7. DOI: 10.19515/j.cnki.1003-1545.2015.05.001 |
[10] | XUE Gang, GONG Xu-hui, WANG Tao, FANG Hong-yuan. Mechanical Constitutive Relation under Cyclic Loading of 10Ni5CrMoV Steel[J]. Development and Application of Materials, 2015, 30(4): 5-11. DOI: 10.19515/j.cnki.1003-1545.2015.04.002 |