CHEN Pei, LI Chong, YUAN Xiaodong, GAO Lingqing, ZHANG Xinyao, CHA Xiaoqin, ZHANG Xinyu, GAO Yuhao. Research on Behavior of Tensile-torsional Fatigue of Ti6321 Alloy[J]. Development and Application of Materials, 2022, 37(1): 1-7.
Citation: CHEN Pei, LI Chong, YUAN Xiaodong, GAO Lingqing, ZHANG Xinyao, CHA Xiaoqin, ZHANG Xinyu, GAO Yuhao. Research on Behavior of Tensile-torsional Fatigue of Ti6321 Alloy[J]. Development and Application of Materials, 2022, 37(1): 1-7.

Research on Behavior of Tensile-torsional Fatigue of Ti6321 Alloy

More Information
  • Received Date: July 25, 2021
  • Available Online: June 10, 2022
  • The fatigue life of Ti6321 alloy with phase differences of 0°and 30°is analyzed by tensile-torsional fatigue test. The propagation path of micro-cracks and macro-cracks at 0°phase difference is studied, and the fatigue fracture surface analyzed.Resultsshow that axial-torsional fatigue life of Ti6321 alloy at 30° phase difference is shorter than that at 0° phase difference. The Ti6321 surface micro-cracks, mainly affected by shear stress, is initiated in the range of 20°~30° to axial direction. Besides, with the increase of equivalent stress amplitude, the number of initiated surface micro-cracks increases. And the main crack tip makes a sharp turn in the direction of small angle to axial direction due to the main crack and merges with micro-cracks during propagation, which restrains the main crack propagation along the maximum normal stress direction. The main axial-torsional fatigue crack, influenced by the micro-cracks, presents step morphology in the propagation zone.
  • [1]
    钱江,王怡,李瑶.钛及钛合金在国外舰船上的应用[J].舰船科学技术,2016,38(11):1-6.
    [2]
    GERDL,JAMES C W.Titanium[M].Berlin:Springer Verlag,2003.
    [3]
    刘强,宋生印,李德君,等.钛合金油井管的耐腐蚀性能及应用研究进展[J].石油矿场机械,2014,43(12):88-94.
    [4]
    史雪枝,周小虎.钛合金油井管性能研究及应用评价现状[J].钢管,2015,44(1):10-14.
    [5]
    JIANG Y Y,KURATH P.Nonproportional cyclic deformation:critical experiments and analytical modeling[J].International Journal of Plasticity,1997,13(8-9):743-763.
    [6]
    ITOH T,YANG T.Material dependence of multiaxial low cycle fatigue lives under non-proportional loading[J].International Journal of Fatigue,2011,33(8):1025-1031.
    [7]
    WU Z R,HU X T,SONG Y D.Multiaxial fatigue life prediction for titanium alloy TC4 under proportional and nonproportional loading[J].International Journal of Fatigue,2014,59:170-175.
    [8]
    SUSMEL L,LAZZARIN P.A bi-parametric Wöhler curve for high cycle multiaxial fatigue assessment[J].Fatigue & Fracture of Engineering Materials & Structures,2002,25(1):63-78.
    [9]
    HAN C,CHEN X,KIM K S.Evaluation of multiaxial fatigue criteria under irregular loading[J].International Journal of Fatigue,2002,24(9):913-922.
    [10]
    KALLMEYER A R,KRGO A,KURATH P.Evaluation of multiaxial fatigue life prediction methodologies for Ti-6Al-4V[J].Journal of Engineering Materials and Technology,2002,124(2):229-237.
    [11]
    PAPADOPOULOS I V,DAVOLI P,GORLA C,et al.A comparative study of multiaxial high-cycle fatigue criteria for metals[J].International Journal of Fatigue,1997,19(3):219-235.
    [12]
    TROCHIDIS A,DOUKA E,POLYZOS B.Formation and evolution of persistent slip bands in metals[J].Journal of the Mechanics and Physics of Solids,2000,48(8):1761-1775.
    [13]
    FORSYTH P J.A two stage process of fatigue crack growth[M].Cranfield:Crack Propagation Symp,1961:76-94.
    [14]
    ENDO M,YANASE K.Crack path and threshold condition for small fatigue crack growth in annealed carbon steels under fully-reversed torsional loading[J].International Journal of Fatigue,2019,125:112-121.
    [15]
    孙训方,方孝淑,关来泰.材料力学-Ⅰ(5版)[M].北京:高等教育出版社,2009.
    [16]
    陈亚军,王先超,王付胜,等.相位角加载条件下2A12铝合金多轴疲劳失效行为[J].材料导报,2017,31(14):147-152.
  • Related Articles

    [1]ZHANG Yajun, ZHANG Xinyao, ZHANG Yunhao. Pertinence of Material Constants in Paris Model for Fatigue Crack Propagation Rate of Metallic Materials[J]. Development and Application of Materials, 2021, 36(4): 1-8.
    [2]ZHANG Yajun, ZHANG Xinyao, ZHANG Yunhao. Analysis on Application of Different Models for Fatigue Crack Propagation Rate of Metallic Materials[J]. Development and Application of Materials, 2021, 36(2): 88-92.
    [3]FEI Qiqi, WANG Haoxuan, XIA Min, GUO Lin, ZHANG Tianhui. Effect of Loading Method on Fatigue Crack Propagation in ADB610 Steel[J]. Development and Application of Materials, 2019, 34(3): 108-112. DOI: 10.19515/j.cnki.1003-1545.2019.03.019
    [4]CHEN Pei, CHA Xiaoqin, GAO Lingqing, ZHANG Xinyao, LIU Xiaoyong. Modeling and Analysis on Surface Crack Propagation and Life Time Prediction of Gas Cylinder[J]. Development and Application of Materials, 2017, 32(5): 5-12. DOI: 10.19515/j.cnki.1003-1545.2017.05.002
    [5]LI Chong, GONG Xuhui, WANG Renfu. Study on Fatigue Surface Crack Propagation of 10Ni5CrMoV Steel under Biaxial Bending Stress[J]. Development and Application of Materials, 2017, 32(3): 5-10. DOI: 10.19515/j.cnki.1003-1545.2017.03.002
    [6]ZHANG Ya-jun, ZHANG Li-juan. Study on Zigzag Path of Low Cycle Fatigue Surface Crack Propagation under Cantilever Bend Loading[J]. Development and Application of Materials, 2013, 28(3): 94-97. DOI: 10.19515/j.cnki.1003-1545.2013.03.021
    [7]ZHANG Ya-jun, ZHANG Li-juan. Influence of Residual Strain to Surface Crack Propagation Rate[J]. Development and Application of Materials, 2012, 27(5): 63-66. DOI: 10.19515/j.cnki.1003-1545.2012.05.017
    [8]HAN Feng, ZHANG Ya-jun, ZHANG Li-juan, GAO Ling-qing. Test Study on Low Cycle Fatigue Surface Crack Propagation Rate for Pressure Vessel Steel[J]. Development and Application of Materials, 2011, 26(4): 56-59,89. DOI: 10.19515/j.cnki.1003-1545.2011.04.012
    [9]ZHANG Ya-jun, LI Yong-jun, LIANG Jian, ZHANG Xin-yao, CHA Xiao-qin, ZHANG Li-juan. Fatigue Crack Propagation of Copper Alloy ZCuAl8Mn14Fe3Ni2 for Propeller[J]. Development and Application of Materials, 2010, 25(5): 1-3,8. DOI: 10.19515/j.cnki.1003-1545.2010.05.001
    [10]Yuan Jingsong. Approximate Calculation of Crack Propagation Rate of Metal Corrosion Fatigue[J]. Development and Application of Materials, 2000, 15(2): 26-29. DOI: 10.19515/j.cnki.1003-1545.2000.02.007

Catalog

    Article Metrics

    Article views (139) PDF downloads (24) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return