LI Hui, LI Weina, QI Junfeng, LI Jingyang, ZHANG Jianchao, ZHANG Jianxun. Study on Abrasive Flow Polishing Process of Aluminum Alloy and High-temperature Alloy Microchannels by SLM Additive Manufacturing[J]. Development and Application of Materials, 2024, 39(2): 1-8,16.
Citation: LI Hui, LI Weina, QI Junfeng, LI Jingyang, ZHANG Jianchao, ZHANG Jianxun. Study on Abrasive Flow Polishing Process of Aluminum Alloy and High-temperature Alloy Microchannels by SLM Additive Manufacturing[J]. Development and Application of Materials, 2024, 39(2): 1-8,16.

Study on Abrasive Flow Polishing Process of Aluminum Alloy and High-temperature Alloy Microchannels by SLM Additive Manufacturing

More Information
  • Received Date: October 31, 2023
  • Available Online: May 08, 2024
  • The metal additive manufacturing technology represented by the laser selective zone melting (SLM) technology makes the surface of the products very rough due to the inherent "powder adhesion" and "spheroidisation effect", which makes it difficult to meet the usage requirements. Facing the rough bore surface of SLM microfluidic channel, we adopt the abrasive flow polishing technology to polish the inner surface of AlSi10Mg and GH4169 microfluidic channels prepared by SLM, and investigate the effect of abrasive flow process on the surface roughness and dimensional accuracy of microfluidic channel bores. The results show that after the abrasive flow treatment, the surface qualities of the bores of both the aluminium alloy and high temperature alloy fabricated by SLM additive manufacturing are effectively improved, and the roughness of the micro-runner bore surface decreases by more than 50 %. The surfaces of the runner bores are clean with no attachments. There is no large change in the runner dimensions, and the dimensional accuracy is retained at a relatively high level. Therefore, the abrasive flow process is an effective polishing technique for SLM additive manufacturing of micro-runner structure parts.
  • [1]
    秦艳利, 孙博慧, 张昊, 等. 选区激光熔化铝合金及其复合材料在航空航天领域的研究进展[J]. 中国激光, 2021, 48(14):15-31.
    [2]
    DADBAKHSH S, MERTENS R, HAO L A, et al. Sel-ective laser melting to manufacture "In situ" metal matrix composites:a review[J]. Advanced Engineering Materials, 2019, 21(3):1801244.
    [3]
    顾冬冬, 张红梅, 陈洪宇, 等. 航空航天高性能金属材料构件激光增材制造[J]. 中国激光, 2020, 47(5):32-55.
    [4]
    ZHANG J L, SONG B, WEI Q S, et al. A review of selective laser melting of aluminum alloys:processing, microstructure, property and developing trends[J]. Journal of Materials Science & Technology, 2019, 35(2):270-284.
    [5]
    赵涛, 史耀耀, 蔺小军, 等. 汽轮机喷嘴环磨粒流抛光工艺参数优化[J]. 计算机集成制造系统, 2014, 20(9):2203-2209.
    [6]
    张骁丽, 齐欢, 魏青松. 铝合金粉末选择性激光熔化成形工艺优化试验研究[J]. 应用激光, 2013, 33(4):391-397.
    [7]
    KUMAR S S, HIREMATH S S. A review on abrasive flow machining (AFM)[J]. Procedia Technology, 2016, 25:1297-1304.
    [8]
    李俊烨. 微小孔磨粒流抛光装置的研制与工艺研究[D]. 长春:长春理工大学, 2011.
    [9]
    郭应竹. 整体叶轮叶片型面抛光的最佳选择:磨粒流加工[J]. 航空工艺技术, 1995, 38(5):27-29.
    [10]
    FURUMOTO T, UEDA T, AMINO T, et al. A study of internal face finishing of the cooling channel in injection mold with free abrasive grains[J]. Journal of Materials Processing Technology, 2011, 211(11):1742-1748.
    [11]
    石岩, 郭志, 刘佳, 等. SLM增材制造微流道内表面磨粒流抛光工艺与机理[J]. 表面技术, 2021, 50(9):361-369.
    [12]
    高航, 李世宠, 付有志, 等. 金属增材制造格栅零件磨粒流抛光[J]. 航空学报, 2017, 38(10):421210.
    [13]
    高航, 彭灿, 王宣平. 航空增材制造复杂结构件表面光整加工技术研究及进展[J]. 航空制造技术, 2019, 62(9):14-22.
    [14]
    BERGMANN C, SCHMIEDEL A, UHLMANN E. Post-processing of selective laser melting components using abrasive flow machining and cleaning[C]//Int. Addit. Manuf. Symp, 2013.
    [15]
    WILLIAMS R E, MELTON V L. Abrasive flow finishing of stereolithography prototypes[J]. Rapid Prototyping Journal, 1998, 4(2):56-67.
    [16]
    孙磊厚, 陈扬枝. 基于选区激光融化成型的空间曲线啮合轮后处理工艺及传动性能研究[J]. 机械设计与制造, 2011(9):87-89.
    [17]
    刘睿诚. 激光选区熔化成型零件表面粗糙度研究及在免组装机构中的应用[D]. 广州:华南理工大学, 2014.
    [18]
    王华明. 高性能大型金属构件激光增材制造:若干材料基础问题[J]. 航空学报, 2014, 35(10):2690-2698.
    [19]
    王伟, 刘小君, 刘焜, 等. 利用摩擦学系统理论对磨粒流加工过程的分析[J]. 现代制造工程, 2011(12):6-9.
  • Related Articles

    [1]DANG Ning, WEI Chen, HUI Cheng, YANG Yuanyu, YANG Shangyu, WANG Jianjun, HAN Lihong. Development of Three-dimensional Characterizations and Electro-pulse Repairing Technology for Forming Defects within Ti Component by Laser Additive Manufacturing[J]. Development and Application of Materials, 2024, 39(4): 83-97.
    [2]YANG Sanqiang, WANG Lei, LI Maowei, GAO Zhanjiao, HAN Jianchao, QI Junfeng. Study on Residual Stress Relief and Shape Accuracy Retention of Titanium Alloy Parts[J]. Development and Application of Materials, 2024, 39(4): 76-82.
    [3]GE Zichao. Numerical Simulation of Flow and Heat Transfer Characteristics of Cu-H2O Nanofluids in Microchannel[J]. Development and Application of Materials, 2020, 35(5): 18-26.
    [4]LIU Li, XUE Zhiguo. Effect of Surface Roughness on Bonding Strength of Composite Plates[J]. Development and Application of Materials, 2019, 34(5): 31-34,39. DOI: 10.19515/j.cnki.1003-1545.2019.05.007
    [5]ZHANG Jintian, WANG Renfu, WANG Xinghua. The Weld Bead Dimensional Prediction of Wire and Arc Additive Manufacture for Ship Steel[J]. Development and Application of Materials, 2018, 33(2): 17-22. DOI: 10.19515/j.cnki.1003-1545.2018.02.003
    [6]LIU Xin, DING Hui, WANG Tingyong, XU Shi, LIU Guangzhou. Effect of Roughness of Substrate on Electrochemical Properties of Metal Oxide Anodes[J]. Development and Application of Materials, 2016, 31(4): 18-22. DOI: 10.19515/j.cnki.1003-1545.2016.04.004
    [7]LIU Shu-liang, MA Yu-pu, GUO Wan-tao, ZHANG Xing-gang. Research on Processing Technology of Z-Dimensional-Reinforced Foam Core Sandwich Structures[J]. Development and Application of Materials, 2012, 27(1): 67-71. DOI: 10.19515/j.cnki.1003-1545.2012.01.016
    [8]ZHANG Hai-yong, LIN Hong-ji, MENG Xian-lin. Influence of Abrasive Blasting on Properties of Al Alloys[J]. Development and Application of Materials, 2010, 25(5): 39-42. DOI: 10.19515/j.cnki.1003-1545.2010.05.011
    [9]FU Yu-bin, ZHOU Qing-yong, ZAI Xue-rong. Progress of Fabrication of Low-dimensional Metallized Nanomaterials on Templates of Biological Molecules(Ⅱ)[J]. Development and Application of Materials, 2009, 24(1): 80-87. DOI: 10.19515/j.cnki.1003-1545.2009.01.022
    [10]FU Yu-bin, ZHOU Qing-yong, ZAI Xue-rong. Fabrication of Low-dimensional Metallized Nanomaterials on Templates of Biological Molecules(Ⅰ)[J]. Development and Application of Materials, 2007, 22(6): 57-62. DOI: 10.19515/j.cnki.1003-1545.2007.06.015

Catalog

    Article Metrics

    Article views (238) PDF downloads (72) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return