LI Junjie, TU Yuchun, ZHANG Bingye, YUAN Yanyan, HE Yue, LIU Xuan. Influence of Layer Thickness on Structural and Mechanical Properties of TiN/ZrON Multilayer Films[J]. Development and Application of Materials, 2024, 39(5): 86-93.
Citation: LI Junjie, TU Yuchun, ZHANG Bingye, YUAN Yanyan, HE Yue, LIU Xuan. Influence of Layer Thickness on Structural and Mechanical Properties of TiN/ZrON Multilayer Films[J]. Development and Application of Materials, 2024, 39(5): 86-93.

Influence of Layer Thickness on Structural and Mechanical Properties of TiN/ZrON Multilayer Films

More Information
  • Received Date: February 28, 2023
  • Available Online: November 19, 2024
  • The TiN/ZrON periodic structure films with different layer thicknesses are prepared by reactive magnetron sputtering technique. The effects of layer thickness variation on the crystal structures and mechanical properties of TiN/ZrON coatings are investigated. All the prepared samples possess a face-centered cubic (FCC) structure. The specimen has a TiN (111) orientation structure when the TiN layer thickness is 2.8 nm. When the TiN layer thickness is 5.2 nm, the multilayer films have the obvious (111), (200) and (220) diffraction peaks. It is concluded that the crystal structure of the specimen is not affected by the substrate type when a metal layer is pre-deposited on the substrate. Furthermore, when the thickness of the ZrON layer is thin, the crystallization of the next TiN layer can be effectively promoted. The maximum hardness and elasticity modulus of the Ti/[TiN(5.2 nm)/ZrON(0.6 nm)]100 specimen are 15.3 and 202.4 GPa, respectively, and the friction coefficient is 0.17, demonstrating good abrasive resistance.
  • [1]
    范喜迎, 黄美东, 李洪玉, 等. 氮气流量对电弧离子镀CrN薄膜组织结构和性能的影响[J]. 真空, 2013, 50(3): 63-65.
    [2]
    徐成俊. 磁控溅射TiN及ZrN薄膜的特性研究[D]. 重庆: 重庆大学, 2005.
    [3]
    徐建华, 王昕, 马胜利, 等. TiN纳米薄膜的高硬度及其产生机制[J]. 材料研究学报, 2008, 22(2): 201-204.
    [4]
    CHU X, BARNETT S A. A model of superlattice yield stress and hardness enhancements[J]. MRS Online Proceedings Library, 2011, 382(1): 291.
    [5]
    UPADHYAY R K, KUMARASWAMIDHAS L A. Investigation of monolayer-multilayer PVD nitride coating[J]. Surface Engineering, 2015, 31(2): 123-133.
    [6]
    BARNETT S A, MADAN A, KIM I, et al. Stability of nanometer-thick layers in hard coatings[J]. MRS Bulletin, 2003, 28(3): 169-172.
    [7]
    PALDEY S, DEEVI S C. Single layer and multilayer wear resistant coatings of (Ti, Al) N: a review[J]. Materials Science and Engineering: A, 2003, 342(1-2): 58-79.
    [8]
    SCHLÖGL M, PAULITSCH J, MAYRHOFER P H. Thermal stability of CrN/AlN superlattice coatings[J]. Surface and Coatings Technology, 2014, 240: 250-254.
    [9]
    杨波波, 孙珲, 杨田林, 等. 结构调制超硬Ti/TiN纳米多层涂层的制备及其尺寸效应[J]. 材料研究学报, 2019, 33(2): 138-144.
    [10]
    FALLMANN M, CHEN Z, ZHANG Z L, et al. Mechanical properties and epitaxial growth of TiN/AlN superlattices[J]. Surface and Coatings Technology, 2019, 375: 1-7.
    [11]
    STAMPFL C, FREEMAN A J. Structure and stability of transition metal nitride interfaces from first-principles: AlN/VN, AlN/TiN, and VN/TiN[J]. Applied Surface Science, 2012, 258(15): 5638-5645.
    [12]
    POGREBNJAK A D, EYIDI D, ABADIAS G, et al. Structure and properties of arc evaporated nanoscale TiN/MoN multilayered systems[J]. International Journal of Refractory Metals and Hard Materials, 2015, 48: 222-228.
    [13]
    SANTECCHIA E, HAMOUDA A M S, MUSHARAVATI F, et al. Wear resistance investigation of titanium nitride-based coatings[J]. Ceramics International, 2015, 41(9): 10349-10379.
    [14]
    CHEN Y M, GUO T, WANG J W, et al. Effects of orientation on microstructure and mechanical properties of TiN/AlN superlattice films[J]. Scripta Materialia, 2021, 201: 113951.
    [15]
    MAYRHOFER P H, RACHBAUER R, HOLEC D, et al. Protective transition metal nitride coatings[M]//Comprehensive Materials Processing. Amsterdam: Elsevier, 2014: 355-388.
    [16]
    CHEN Q C, LI A, WU G Z, et al. Tribochemistry of TiN films sliding against ceramic counterparts in vacuum condition and N2 atmosphere[J]. Ceramics International, 2023, 49(6): 8907-8915.
    [17]
    TAVARES C J, REBOUTA L, ALMEIDA B, et al. Structural characterization of multilayered sputtered TiN/ZrN coatings[J]. Surface and Coatings Technology, 1998, 100-101: 65-71.
    [18]
    TAVARES C J, REBOUTA L, ALMEIDA B, et al. Deposition and characterization of multilayered TiN/ZrN coatings[J]. Thin Solid Films, 1998, 317(1-2): 124-128.
    [19]
    TAVARES C J, REBOUTA L, ANDRITSCHKY M, et al. Mechanical characterisation of TiN/ZrN multi-layered coatings[J]. Journal of Materials Processing Technology, 1999, 92-93: 177-183.
    [20]
    ZHOU C, WANG J J, MENG J, et al. Effects of modulation layer thickness on fracture toughness of a TiN/AlN-Ni multilayer film[J]. Materials & Design, 2022, 222: 111097.
    [21]
    MAKSAKOVA O, SIMOẼS S, POGREBNJAK A, et al. The influence of deposition conditions and bilayer thickness on physical-mechanical properties of CA-PVD multilayer ZrN/CrN coatings[J]. Materials Characterization, 2018, 140: 189-196.
    [22]
    CHAN Y C, CHEN H W, CHAO P S, et al. Microstructure control in TiAlN/SiNx multilayers with app-ropriate thickness ratios for improvement of hardness and anti-corrosion characteristics[J]. Vacuum, 2013, 87: 195-199.
    [23]
    CARRETERO E, ALONSO R, PELAYO C. Optical and electrical properties of stainless steel oxynitride thin films deposited in an in-line sputtering system[J]. Applied Surface Science, 2016, 379: 249-258.
    [24]
    CARVALHO P, VAZ F, REBOUTA L, et al. Structural, electrical, optical, and mechanical characterizations of decorative ZrOxNy thin films[J]. Journal of Applied Physics, 2005, 98(2): 023715.
    [25]
    CUBILLOS G, OLAYA J, CLAVIJO D, et al. Corrosion resistance and biocompatibility of zirconium oxynitride thin film growth by rf sputtering[J]. Revista Mexicana De Física, 2012, 58(4): 328-334.
    [26]
    KHAMSEH S. Synthesis and characterization of tung-sten oxynitride films deposited by reactive magnetron sputtering[J]. Journal of Alloys and Compounds, 2014, 611: 249-252.
    [27]
    HUANG J H, LIN T C, YU G P. Phase transition and mechanical properties of ZrNxOy thin films on AISI 304 stainless steel[J]. Surface and Coatings Technology, 2011, 206(1): 107-116.
    [28]
    HUANG J H, TSAI Z E, YU G P. Mechanical properties and corrosion resistance of nanocrystalline ZrNxOy coatings on AISI 304 stainless steel by ion plating[J]. Surface and Coatings Technology, 2008, 202(20): 4992-5000.
    [29]
    张冰烨, 袁妍妍, 涂昱淳, 等. 反应磁控溅射周期结构TiN/ZrNxOy多层膜的微结构与膜基结合力[J]. 江苏科技大学学报(自然科学版), 2021, 35(1): 30-35.
    [30]
    TRACHE A, MEININGER G A. Atomic force microscopy (AFM)[J]. Current Protocols in Microbiology, 2008, 8(1): 2C1-2C17.
    [31]
    ZUO B, XU J H, LU G Y, et al. Microstructures, mechanical properties and corrosion resistance of TiN/AlN multilayer films[J]. Ceramics International, 2022, 48(8): 11629-11635.
    [32]
    ZHANG H H, LI Z Q, HE W F, et al. Damage mechanisms evolution of TiN/Ti multilayer films with different modulation periods in cyclic impact conditions[J]. Applied Surface Science, 2021, 540: 148366.
    [33]
    GONZÁLEZ-SEVILLA J E, BERUMEN J O, FLORES-MARTÍNEZ M, et al. Tribological study of TaTiN/TaTi multilayer films with hierarchical arrangement[J]. Wear, 2022, 498-499: 204337.
    [34]
    SHI W B, LIU Y M, LI W H, et al. Effects of modulation ratio on the microstructure, mechanical and tribological properties of WB2/Cr multilayer films deposited by magnetron sputtering[J]. Ceramics International, 2021, 47(14): 19678-19686.
    [35]
    JU H B, ZHOU R, LUAN J, et al. Multilayer Mo2N-Ag/SiNx films for demanding applications: Morphol-ogy, structure and temperature-cycling tribological properties[J]. Materials & Design, 2022, 223: 111128.
  • Related Articles

    [1]CUI Xiaofang, WU Xiaofei, XI Yulin. Study on Nodule-forming Causes of ITO Target During Magnetron Sputtering[J]. Development and Application of Materials, 2020, 35(1): 36-39,51.
    [2]CUI Xiaofang, WU Xiaofei, XI Yulin. Study on DC Magnetron Sputtering Coating Process of ITO Target[J]. Development and Application of Materials, 2019, 34(6): 35-39. DOI: 10.19515/j.cnki.1003-1545.2019.06.007
    [3]LI Zhaobo, MA Xiaowen, HUANG Hao, DU Linghui, WANG Kai, LI Xingyu. Analysis of Cause of Stripe in Sputter Coating Niobium Target Surface[J]. Development and Application of Materials, 2019, 34(1): 11-15. DOI: 10.19515/j.cnki.1003-1545.2019.01.003
    [4]ZHANG Zhongyi, XU Rihong, ZHANG Zhenhua, WANG Qi, JIANG Hong. Study on Continuous Coating Technology of High Transmittance Diamond-Face Glass[J]. Development and Application of Materials, 2017, 32(4): 107-112. DOI: 10.19515/j.cnki.1003-1545.2017.04.017
    [5]JU Hongbo, HE Sheng, CHEN Tong, CHEN Min, GUO Liping, YU Lihua, XU Junhua. Effect of Base Pressure on Microstructure,Adhesion Strength and Corrosion Resistance of Ru Films Deposited via Magnetron Sputtering[J]. Development and Application of Materials, 2016, 31(4): 95-98,112. DOI: 10.19515/j.cnki.1003-1545.2016.04.017
    [6]LI Zhao-bo, ZHANG Chun-heng, LI Gui-peng, TONG Lei. Research on Grain Size Controlling Process of Niobium Target Used for Sputtering and Coating[J]. Development and Application of Materials, 2010, 25(6): 33-35,39. DOI: 10.19515/j.cnki.1003-1545.2010.06.009
    [7]FENG Li-ping, LIU Zheng-tang. Structural Characteristics of HfSiON High-k Dielectrics Films Grown by Radio Frequency Magnetron Sputtering[J]. Development and Application of Materials, 2008, 23(2): 5-7,17. DOI: 10.19515/j.cnki.1003-1545.2008.02.002
    [8]TIAN Xiu-juan. Hot Corrosion Behavior of Cast K52 Alloy and Its Sputtered Coating[J]. Development and Application of Materials, 2007, 22(5): 16-19. DOI: 10.19515/j.cnki.1003-1545.2007.05.005
    [9]LIU Hong-fei, CHENG Xiao-nong, XU Gui-fang, ZHANG Zhi-ping, FU Ting-bo. Dielectric Properties of Alumina Films Prepared by RF Magnetron Sputtering[J]. Development and Application of Materials, 2007, 22(1): 5-8. DOI: 10.19515/j.cnki.1003-1545.2007.01.002
    [10]ZHOU Shao-bo, WANG Shuang-bao, CHEN Si-hai, YI Xin-jian. Fabrication of Polycrystalline VOx Films through Reactive Ion-beam Sputtering and Reductive Annealing[J]. Development and Application of Materials, 2004, 19(6): 20-21,29. DOI: 10.19515/j.cnki.1003-1545.2004.06.006
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article Metrics

    Article views (45) PDF downloads (17) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return