ZHANG Xiaopeng, YANG Chao, LI Zhenshuai, BAO Shuai, CHEN Yungui. Microstructure and Mechanical Properties of High-Silicon Heat-Resistant Mg-9Al-3Si Magnesium Alloy by Rapid Solidification and Hot Extrusion Processes[J]. Development and Application of Materials, 2024, 39(5): 31-38.
Citation: ZHANG Xiaopeng, YANG Chao, LI Zhenshuai, BAO Shuai, CHEN Yungui. Microstructure and Mechanical Properties of High-Silicon Heat-Resistant Mg-9Al-3Si Magnesium Alloy by Rapid Solidification and Hot Extrusion Processes[J]. Development and Application of Materials, 2024, 39(5): 31-38.

Microstructure and Mechanical Properties of High-Silicon Heat-Resistant Mg-9Al-3Si Magnesium Alloy by Rapid Solidification and Hot Extrusion Processes

More Information
  • Received Date: March 25, 2024
  • Available Online: November 19, 2024
  • Low yield strength and poor heat resistance are two major obstacles to the application promotion of magnesium alloys. In this study, heat-resistant high silicon Mg-9Al-3Si magnesium alloy with excellent high temperature performances is prepared by combining rapid solidification and hot extrusion processes, and its microstructure and mechanical properties are investigated. Results show that the grains of the rapidly solidified Mg-9Al-3Si ingot are refined, and that the distribution of the fine Mg2Si phase is greatly improved. The rapidly solidified Mg-9Al-3Si extruded magnesium alloy also exhibits a weak texture with a maximum textural strength of only 4.61 in the (0001) basal plane. The tensile strength, yield strength and elongation of the rapidly solidified Mg-9Al-3Si extruded magnesium alloy are 403.0 MPa, 353.0 MPa and 12% at room temperature, 203.0 MPa, 199.0 MPa and 27% at 150 ℃, and 119.0 MPa, 110.0 MPa and 30% at 200 ℃. The high-temperature strengths, especially the yield strength at 150 ℃, are excellent.
  • [1]
    张卫红, 唐长红. 航空航天装备的轻量化:挑战与未来[J]. 航空学报, 2024, 45(5): 529965-529965.
    [2]
    娄元豪, 王优强, 邢照斌. 汽车轻量化研究进展[J]. 汽车工艺与材料, 2023(9): 1-7.
    [3]
    ZENG Z R, STANFORD N, DAVIES C H J, et al. Magnesium extrusion alloys: a review of developments and prospects[J]. International Materials Reviews, 2019, 64(1): 27-62.
    [4]
    YANG H, XIE W, SONG J, et al. Current research progress of heat-resistant Mg alloys: A review. International Journal of Minerals, Metallurgy and Materials. http://ijmmm.ustb.edu.cn/en/article/doi/10.1007/s12613-023-2802-7.
    [5]
    AGHION E, BRONFÍN B, VON BUCH F, et al. Newly developed magnesium alloys for powertrain applications[J]. JOM, 2003, 55(11): 30-33.
    [6]
    GAO J R, SUN X Y, ZHOU Y X, et al. Enhanced elevated temperature mechanical properties of AE84 heat-resistant cast magnesium alloy[J]. Vacuum, 2023, 207: 111662.
    [7]
    GAVRAS S, ZHU S M, EASTON M A, et al. Compressive creep behavior of high-pressure die-cast aluminum-containing magnesium alloys developed for elevated temperature applications[J]. Frontiers in Materials, 2019, 6: 262.
    [8]
    LV S H, LÜ X L, MENG F Z, et al. Microstructures and mechanical properties in a Gd-modified high-pressure die casting Mg-4Al-3La-0.3Mn alloy[J]. Materials Science and Engineering: A, 2020, 773: 138725.
    [9]
    HUANG Z H, LIU S Q, CHEN F, et al. Microstructures and mechanical properties of hot-rolled Mg-Al-Ce ternary alloy sheets with different Al contents[J]. Journal of Materials Engineering and Performance, 2024, 33(6): 2599-2606.
    [10]
    KANG D H, PARK S S, KIM N J. Development of creep resistant die cast Mg-Sn-Al-Si alloy[J]. Materials Science and Engineering: A, 2005, 413-414: 555-560.
    [11]
    WANG X M, SU Y, GUO L L, et al. Research progress of heat resistant magnesium alloys[J]. Journal of Physics: Conference Series, 2022, 2160(1): 012015.
    [12]
    LI X L, CHEN Y B, WANGX, et al. Effect of cooling rates on as-cast microstructures of Mg-9Al-xSi (x=1, 3) alloys[J]. Transactions of Nonferrous Metals Society of China, 2010, 20: s393-s396.
    [13]
    KIM J J, KIM D H, SHIN K S, et al. Modification of Mg2Si morphology in squeeze cast Mg-Al-Zn-Si alloys by Ca or P addition[J]. Scripta Materialia, 1999, 41(3): 333-340.
    [14]
    ZHENG N, WANG H Y, WANG W, et al. Invalidation of KBF4 modification on the primary Mg2Si in Mg-Si alloys by Al addition[J]. Journal of Alloys and Compounds, 2008, 459(1-2): L8-L12.
    [15]
    BLUM W, ZHANG P, WATZINGER B, et al. Comparative study of creep of the die-cast Mg-alloys AZ91, AS21, AS41, AM60 and AE42[J]. Materials Science and Engineering: A, 2001, 319-321: 735-740.
    [16]
    SETH P P, PARKASH O, KUMAR D. Structure and mechanical behavior of in situ developed Mg2Si phase in magnesium and aluminum alloys-a review[J]. RSC Advances, 2020, 10(61): 37327-37345.
    [17]
    SRINIVASAN A, PILLAI U T S, SWAMINATHAN J, et al. Observations of microstructural refinement in Mg-Al-Si alloys containing strontium[J]. Journal of Materials Science, 2006, 41(18): 6087-6089.
    [18]
    NAM K Y, SONG D H, LEE C W, et al. Modification of Mg2Si morphology in as-cast Mg-Al-Si alloys with strontium and antimony[J]. Materials Science Forum, 2006, 510-511: 238-241.
    [19]
    DU J, IWAI K, LI W F, et al. Effects of alternating current imposition and alkaline earth elements on modification of primary Mg2Si crystals in hypereutectic Mg-Si alloy[J]. Transactions of Nonferrous Metals Society of China, 2009, 19(5): 1051-1056.
    [20]
    XU C L, WANG H Y, QIU F, et al. Cooling rate and microstructure of rapidly solidified Al-20wt.% Si alloy[J]. Materials Science and Engineering: A, 2006, 417(1-2): 275-280.
    [21]
    JIN L, MISHRA R K, SACHDEV A K. Texture modification during extrusion of some Mg alloys[J]. Metallurgical and Materials Transactions A, 2012, 43(6): 2148-2157.
    [22]
    HUANG X S, CHINO Y, YUASA M, et al. Microstructure and mechanical properties of AZX912 magnesium alloy extruded at different temperatures[J]. Materials Science and Engineering: A, 2017, 679: 162-171.
    [23]
    CHRISTIAN J W, MAHAJAN S. Deformation twinning[J]. Progress in Materials Science, 1995, 39(1-2): 0079642594000077.
    [24]
    ZHANG J, JOSHI S P. Phenomenological crystal plasticity modeling and detailed micromechanical investigations of pure magnesium[J]. Journal of the Mechanics and Physics of Solids, 2012, 60(5): 945-972.
    [25]
    MEYERS M A, VÖHRINGER O, LUBARDA V A. The onset of twinning in metals: a constitutive description[J]. Acta Materialia, 2001, 49(19): 4025-4039.
    [26]
    BARNETT M R, KESHAVARZ Z, BEER A G, et al. Influence of grain size on the compressive deformation of wrought Mg-3Al-1Zn[J]. Acta Materialia, 2004, 52(17): 5093-5103.
    [27]
    ZHU S M, EASTON M A, ABBOTT T B, et al. The influence of individual rare earth elements (La, Ce, or Nd) on creep resistance of die-cast magnesium alloy AE44[J]. Advanced Engineering Materials, 2016, 18(6): 932-937.
    [28]
    DARGUSCH M S, PETTERSEN K, BAKKE P, et al. Microstructure and mechanical properties of high pressure die cast magnesium alloy AE42 with 1% strontium[J]. International Journal of Cast Metals Research, 2004, 17(3): 170-173.
    [29]
    KANDEMIR S, GAVRAS S, DIERINGA H. High temperature tensile, compression and creep behavior of recycled short carbon fibre reinforced AZ91 magnesium alloy fabricated by a high shearing dispersion technique[J]. Journal of Magnesium and Alloys, 2021, 9(5): 1753-1767.
    [30]
    HU H, YU A, LI N Y, et al. Potential magnesium alloys for high temperature die cast automotive applications: a review[J]. Materials and Manufacturing Processes, 2003, 18(5): 687-717.
    [31]
    DONG X X, FENG L Y, WANG S H, et al. A new die-cast magnesium alloy for applications at higher Elevated temperatures of 200-300 ℃[J]. Journal of Magnesium and Alloys, 2021, 9(1): 90-101.
    [32]
    ZHU S M, ABBOTT T B, GIBSON M A, et al. The influence of minor Mn additions on creep resistance of die-cast Mg-Al-RE alloys[J]. Materials Science and Engineering: A, 2017, 682: 535-541.
    [33]
    YANG Q, BU F Q, MENG F Z, et al. The improved effects by the combinative addition of lanthanum and samarium on the microstructures and the tensile properties of high-pressure die-cast Mg-4Al-based alloy[J]. Materials Science and Engineering: A, 2015, 628: 319-326.
    [34]
    ZHANG J H, YU P, LIU K, et al. Effect of substituting cerium-rich mischmetal with lanthanum on microstructure and mechanical properties of die-cast Mg-Al-RE alloys[J]. Materials & Design, 2009, 30(7): 2372-2378.
    [35]
    LUO A A. Recent magnesium alloy development for elevated temperature applications[J]. International Materials Reviews, 2004, 49(1): 13-30.
    [36]
    ZHANG J H, LIU S J, LENG Z, et al. Structure stability and mechanical properties of high-pressure die-cast Mg-Al-La-Y-based alloy[J]. Materials Science and Engineering: A, 2012, 531: 70-75.
    [37]
    KIM B H, JO S M, LEE Y C, et al. Microstructure, tensile properties and creep behavior of Mg-4Al-2Sn containing Ca alloy produced by different casting technologies[J]. Materials Science and Engineering: A, 2012, 535: 40-47.
    [38]
    ZHANG J H, LIU K, FANG D Q, et al. Microstructure, tensile properties, and creep behavior of high-pressure die-cast Mg-4Al-4RE-0.4Mn (RE=La, Ce) alloys[J]. Journal of Materials Science, 2009, 44(8): 2046-2054.
    [39]
    YANG Q, GUAN K, BU F Q, et al. Microstructures and tensile properties of a high-strength die-cast Mg-4Al-2RE-2Ca-0.3Mn alloy[J]. Materials Characterization, 2016, 113: 180-188.
  • Related Articles

    [1]DOU Lei, ZHAI Jianming, WANG Jing, SUN Yonghui, SHANG Xuexin. Study on Strength and Toughness Testing of 45 Steel Based on Continuous Ball Indentation Method[J]. Development and Application of Materials, 2022, 37(6): 39-46.
    [2]WANG Desheng, WANG Zhenghong, WANG Pengyun, ZHANG Fanxing, CHU Shaoqi, LI Li, XIE Shufeng, FENG Yan. Microstructures and Fatigue Crack Growth Rates of Domestic and Imported 5083-H116 Aliuminum Alloy[J]. Development and Application of Materials, 2021, 36(5): 20-29.
    [3]ZHENG Guohua. Study on Microstructure and Fracture Behavior of X100 Pipeline Steel Welded Joints[J]. Development and Application of Materials, 2019, 34(4): 65-69. DOI: 10.19515/j.cnki.1003-1545.2019.04.012
    [4]XUE Gang, GONG Xuhui, SU Yang, LIU Dongsheng, MA Jianpo, GUO Tong. The Statistical Natures of Relativity between Fracture Toughness KC and Impact Toughness for Q500 Steel[J]. Development and Application of Materials, 2016, 31(4): 1-6. DOI: 10.19515/j.cnki.1003-1545.2016.04.001
    [5]SU Yang, YI Lun-xiong, MA Jian-po, GONG Xu-hui. Fracture Toughness Expression of Q500 Welding Joint[J]. Development and Application of Materials, 2015, 30(3): 1-5. DOI: 10.19515/j.cnki.1003-1545.2015.03.001
    [6]SUN Peng-peng, LI Shi-kai, SUN Er-ju, WAN Zi-yong, GUO Ning, LEI Xiao-wei. Effect of Forging Times on Fracture Toughness and High Cycle Fatigue of TB6 Alloy[J]. Development and Application of Materials, 2013, 28(5): 18-21. DOI: 10.19515/j.cnki.1003-1545.2013.05.005
    [7]ZHANG Ya-jun, LÜ Yi-fan. Study on Fracture Toughness Test of TC4ELI Alloy[J]. Development and Application of Materials, 2012, 27(2): 14-17. DOI: 10.19515/j.cnki.1003-1545.2012.02.004
    [8]CHEN Li-zhi, ZHANG Ya-jun. Research on Low Temperature CTOD Fracture Toughness and da/dN Properties of S355N and S355N-Z25 Structural Steel Plate[J]. Development and Application of Materials, 2011, 26(5): 42-44,48. DOI: 10.19515/j.cnki.1003-1545.2011.05.010
    [9]ZHANG Ya-jun, WANG Jia-min, ZHANG Xin-yao, LIANG Jian, CHA Xiao-qin. Test Study of Fracture Toughness on Super-high Strength Structural Steel AF1410[J]. Development and Application of Materials, 2008, 23(5): 12-14,29. DOI: 10.19515/j.cnki.1003-1545.2008.05.003
    [10]Yuan Jingsong. Approximate Calculation of Crack Propagation Rate of Metal Corrosion Fatigue[J]. Development and Application of Materials, 2000, 15(2): 26-29. DOI: 10.19515/j.cnki.1003-1545.2000.02.007

Catalog

    Article Metrics

    Article views (62) PDF downloads (31) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return