Citation: | ZHANG Xiaopeng, YANG Chao, LI Zhenshuai, BAO Shuai, CHEN Yungui. Microstructure and Mechanical Properties of High-Silicon Heat-Resistant Mg-9Al-3Si Magnesium Alloy by Rapid Solidification and Hot Extrusion Processes[J]. Development and Application of Materials, 2024, 39(5): 31-38. |
[1] |
张卫红, 唐长红. 航空航天装备的轻量化:挑战与未来[J]. 航空学报, 2024, 45(5): 529965-529965.
|
[2] |
娄元豪, 王优强, 邢照斌. 汽车轻量化研究进展[J]. 汽车工艺与材料, 2023(9): 1-7.
|
[3] |
ZENG Z R, STANFORD N, DAVIES C H J, et al. Magnesium extrusion alloys: a review of developments and prospects[J]. International Materials Reviews, 2019, 64(1): 27-62.
|
[4] |
YANG H, XIE W, SONG J, et al. Current research progress of heat-resistant Mg alloys: A review. International Journal of Minerals, Metallurgy and Materials. http://ijmmm.ustb.edu.cn/en/article/doi/10.1007/s12613-023-2802-7.
|
[5] |
AGHION E, BRONFÍN B, VON BUCH F, et al. Newly developed magnesium alloys for powertrain applications[J]. JOM, 2003, 55(11): 30-33.
|
[6] |
GAO J R, SUN X Y, ZHOU Y X, et al. Enhanced elevated temperature mechanical properties of AE84 heat-resistant cast magnesium alloy[J]. Vacuum, 2023, 207: 111662.
|
[7] |
GAVRAS S, ZHU S M, EASTON M A, et al. Compressive creep behavior of high-pressure die-cast aluminum-containing magnesium alloys developed for elevated temperature applications[J]. Frontiers in Materials, 2019, 6: 262.
|
[8] |
LV S H, LÜ X L, MENG F Z, et al. Microstructures and mechanical properties in a Gd-modified high-pressure die casting Mg-4Al-3La-0.3Mn alloy[J]. Materials Science and Engineering: A, 2020, 773: 138725.
|
[9] |
HUANG Z H, LIU S Q, CHEN F, et al. Microstructures and mechanical properties of hot-rolled Mg-Al-Ce ternary alloy sheets with different Al contents[J]. Journal of Materials Engineering and Performance, 2024, 33(6): 2599-2606.
|
[10] |
KANG D H, PARK S S, KIM N J. Development of creep resistant die cast Mg-Sn-Al-Si alloy[J]. Materials Science and Engineering: A, 2005, 413-414: 555-560.
|
[11] |
WANG X M, SU Y, GUO L L, et al. Research progress of heat resistant magnesium alloys[J]. Journal of Physics: Conference Series, 2022, 2160(1): 012015.
|
[12] |
LI X L, CHEN Y B, WANGX, et al. Effect of cooling rates on as-cast microstructures of Mg-9Al-xSi (x=1, 3) alloys[J]. Transactions of Nonferrous Metals Society of China, 2010, 20: s393-s396.
|
[13] |
KIM J J, KIM D H, SHIN K S, et al. Modification of Mg2Si morphology in squeeze cast Mg-Al-Zn-Si alloys by Ca or P addition[J]. Scripta Materialia, 1999, 41(3): 333-340.
|
[14] |
ZHENG N, WANG H Y, WANG W, et al. Invalidation of KBF4 modification on the primary Mg2Si in Mg-Si alloys by Al addition[J]. Journal of Alloys and Compounds, 2008, 459(1-2): L8-L12.
|
[15] |
BLUM W, ZHANG P, WATZINGER B, et al. Comparative study of creep of the die-cast Mg-alloys AZ91, AS21, AS41, AM60 and AE42[J]. Materials Science and Engineering: A, 2001, 319-321: 735-740.
|
[16] |
SETH P P, PARKASH O, KUMAR D. Structure and mechanical behavior of in situ developed Mg2Si phase in magnesium and aluminum alloys-a review[J]. RSC Advances, 2020, 10(61): 37327-37345.
|
[17] |
SRINIVASAN A, PILLAI U T S, SWAMINATHAN J, et al. Observations of microstructural refinement in Mg-Al-Si alloys containing strontium[J]. Journal of Materials Science, 2006, 41(18): 6087-6089.
|
[18] |
NAM K Y, SONG D H, LEE C W, et al. Modification of Mg2Si morphology in as-cast Mg-Al-Si alloys with strontium and antimony[J]. Materials Science Forum, 2006, 510-511: 238-241.
|
[19] |
DU J, IWAI K, LI W F, et al. Effects of alternating current imposition and alkaline earth elements on modification of primary Mg2Si crystals in hypereutectic Mg-Si alloy[J]. Transactions of Nonferrous Metals Society of China, 2009, 19(5): 1051-1056.
|
[20] |
XU C L, WANG H Y, QIU F, et al. Cooling rate and microstructure of rapidly solidified Al-20wt.% Si alloy[J]. Materials Science and Engineering: A, 2006, 417(1-2): 275-280.
|
[21] |
JIN L, MISHRA R K, SACHDEV A K. Texture modification during extrusion of some Mg alloys[J]. Metallurgical and Materials Transactions A, 2012, 43(6): 2148-2157.
|
[22] |
HUANG X S, CHINO Y, YUASA M, et al. Microstructure and mechanical properties of AZX912 magnesium alloy extruded at different temperatures[J]. Materials Science and Engineering: A, 2017, 679: 162-171.
|
[23] |
CHRISTIAN J W, MAHAJAN S. Deformation twinning[J]. Progress in Materials Science, 1995, 39(1-2): 0079642594000077.
|
[24] |
ZHANG J, JOSHI S P. Phenomenological crystal plasticity modeling and detailed micromechanical investigations of pure magnesium[J]. Journal of the Mechanics and Physics of Solids, 2012, 60(5): 945-972.
|
[25] |
MEYERS M A, VÖHRINGER O, LUBARDA V A. The onset of twinning in metals: a constitutive description[J]. Acta Materialia, 2001, 49(19): 4025-4039.
|
[26] |
BARNETT M R, KESHAVARZ Z, BEER A G, et al. Influence of grain size on the compressive deformation of wrought Mg-3Al-1Zn[J]. Acta Materialia, 2004, 52(17): 5093-5103.
|
[27] |
ZHU S M, EASTON M A, ABBOTT T B, et al. The influence of individual rare earth elements (La, Ce, or Nd) on creep resistance of die-cast magnesium alloy AE44[J]. Advanced Engineering Materials, 2016, 18(6): 932-937.
|
[28] |
DARGUSCH M S, PETTERSEN K, BAKKE P, et al. Microstructure and mechanical properties of high pressure die cast magnesium alloy AE42 with 1% strontium[J]. International Journal of Cast Metals Research, 2004, 17(3): 170-173.
|
[29] |
KANDEMIR S, GAVRAS S, DIERINGA H. High temperature tensile, compression and creep behavior of recycled short carbon fibre reinforced AZ91 magnesium alloy fabricated by a high shearing dispersion technique[J]. Journal of Magnesium and Alloys, 2021, 9(5): 1753-1767.
|
[30] |
HU H, YU A, LI N Y, et al. Potential magnesium alloys for high temperature die cast automotive applications: a review[J]. Materials and Manufacturing Processes, 2003, 18(5): 687-717.
|
[31] |
DONG X X, FENG L Y, WANG S H, et al. A new die-cast magnesium alloy for applications at higher Elevated temperatures of 200-300 ℃[J]. Journal of Magnesium and Alloys, 2021, 9(1): 90-101.
|
[32] |
ZHU S M, ABBOTT T B, GIBSON M A, et al. The influence of minor Mn additions on creep resistance of die-cast Mg-Al-RE alloys[J]. Materials Science and Engineering: A, 2017, 682: 535-541.
|
[33] |
YANG Q, BU F Q, MENG F Z, et al. The improved effects by the combinative addition of lanthanum and samarium on the microstructures and the tensile properties of high-pressure die-cast Mg-4Al-based alloy[J]. Materials Science and Engineering: A, 2015, 628: 319-326.
|
[34] |
ZHANG J H, YU P, LIU K, et al. Effect of substituting cerium-rich mischmetal with lanthanum on microstructure and mechanical properties of die-cast Mg-Al-RE alloys[J]. Materials & Design, 2009, 30(7): 2372-2378.
|
[35] |
LUO A A. Recent magnesium alloy development for elevated temperature applications[J]. International Materials Reviews, 2004, 49(1): 13-30.
|
[36] |
ZHANG J H, LIU S J, LENG Z, et al. Structure stability and mechanical properties of high-pressure die-cast Mg-Al-La-Y-based alloy[J]. Materials Science and Engineering: A, 2012, 531: 70-75.
|
[37] |
KIM B H, JO S M, LEE Y C, et al. Microstructure, tensile properties and creep behavior of Mg-4Al-2Sn containing Ca alloy produced by different casting technologies[J]. Materials Science and Engineering: A, 2012, 535: 40-47.
|
[38] |
ZHANG J H, LIU K, FANG D Q, et al. Microstructure, tensile properties, and creep behavior of high-pressure die-cast Mg-4Al-4RE-0.4Mn (RE=La, Ce) alloys[J]. Journal of Materials Science, 2009, 44(8): 2046-2054.
|
[39] |
YANG Q, GUAN K, BU F Q, et al. Microstructures and tensile properties of a high-strength die-cast Mg-4Al-2RE-2Ca-0.3Mn alloy[J]. Materials Characterization, 2016, 113: 180-188.
|
[1] | DOU Lei, ZHAI Jianming, WANG Jing, SUN Yonghui, SHANG Xuexin. Study on Strength and Toughness Testing of 45 Steel Based on Continuous Ball Indentation Method[J]. Development and Application of Materials, 2022, 37(6): 39-46. |
[2] | WANG Desheng, WANG Zhenghong, WANG Pengyun, ZHANG Fanxing, CHU Shaoqi, LI Li, XIE Shufeng, FENG Yan. Microstructures and Fatigue Crack Growth Rates of Domestic and Imported 5083-H116 Aliuminum Alloy[J]. Development and Application of Materials, 2021, 36(5): 20-29. |
[3] | ZHENG Guohua. Study on Microstructure and Fracture Behavior of X100 Pipeline Steel Welded Joints[J]. Development and Application of Materials, 2019, 34(4): 65-69. DOI: 10.19515/j.cnki.1003-1545.2019.04.012 |
[4] | XUE Gang, GONG Xuhui, SU Yang, LIU Dongsheng, MA Jianpo, GUO Tong. The Statistical Natures of Relativity between Fracture Toughness KC and Impact Toughness for Q500 Steel[J]. Development and Application of Materials, 2016, 31(4): 1-6. DOI: 10.19515/j.cnki.1003-1545.2016.04.001 |
[5] | SU Yang, YI Lun-xiong, MA Jian-po, GONG Xu-hui. Fracture Toughness Expression of Q500 Welding Joint[J]. Development and Application of Materials, 2015, 30(3): 1-5. DOI: 10.19515/j.cnki.1003-1545.2015.03.001 |
[6] | SUN Peng-peng, LI Shi-kai, SUN Er-ju, WAN Zi-yong, GUO Ning, LEI Xiao-wei. Effect of Forging Times on Fracture Toughness and High Cycle Fatigue of TB6 Alloy[J]. Development and Application of Materials, 2013, 28(5): 18-21. DOI: 10.19515/j.cnki.1003-1545.2013.05.005 |
[7] | ZHANG Ya-jun, LÜ Yi-fan. Study on Fracture Toughness Test of TC4ELI Alloy[J]. Development and Application of Materials, 2012, 27(2): 14-17. DOI: 10.19515/j.cnki.1003-1545.2012.02.004 |
[8] | CHEN Li-zhi, ZHANG Ya-jun. Research on Low Temperature CTOD Fracture Toughness and da/dN Properties of S355N and S355N-Z25 Structural Steel Plate[J]. Development and Application of Materials, 2011, 26(5): 42-44,48. DOI: 10.19515/j.cnki.1003-1545.2011.05.010 |
[9] | ZHANG Ya-jun, WANG Jia-min, ZHANG Xin-yao, LIANG Jian, CHA Xiao-qin. Test Study of Fracture Toughness on Super-high Strength Structural Steel AF1410[J]. Development and Application of Materials, 2008, 23(5): 12-14,29. DOI: 10.19515/j.cnki.1003-1545.2008.05.003 |
[10] | Yuan Jingsong. Approximate Calculation of Crack Propagation Rate of Metal Corrosion Fatigue[J]. Development and Application of Materials, 2000, 15(2): 26-29. DOI: 10.19515/j.cnki.1003-1545.2000.02.007 |