Citation: | GONG Yiwei, LI Xiang, LIN Yuyang, LIU Tengda, LI Qingsong, XUE Tiantian, DONG Qipeng, ZHANG Qingyu, WANG Xiaonan. Study on Nanosecond Laser Fabrication of Superhydrophobic Surface on Aluminum Alloy and Thermal Bounce Behavior of Droplets[J]. Development and Application of Materials, 2024, 39(5): 44-54. |
[1] |
BARNWAL V K, RAGHAVAN R, TEWARI A, et al. Effect of microstructure and texture on forming beha-viour of AA-6061 aluminium alloy sheet[J]. Materials Science and Engineering: A, 2017, 679: 56-65.
|
[2] |
GUPTA R, VERMA R, KANGO S, et al. A critical review on recent progress, open challenges, and applications of corrosion-resistant superhydrophobic coating[J]. Materials Today Communications, 2023, 34: 105201.
|
[3] |
MILLES S, SOLDERA M, KUNTZE T, et al. Characterization of self-cleaning properties on superhydro-phobic aluminum surfaces fabricated by direct laser writing and direct laser interference patterning[J]. Applied Surface Science, 2020, 525: 146518.
|
[4] |
LI X W, ZHANG Q X, GUO Z, et al. Fabrication of superhydrophobic surface with improved corrosion inhibition on 6061 aluminum alloy substrate[J]. Applied Surface Science, 2015, 342: 76-83.
|
[5] |
江雷. 从自然到仿生的超疏水纳米界面材料[J]. 新材料产业, 2003(3): 60-65.
|
[6] |
ZHI J H, ZHANG L Z. Durable superhydrophobic surfaces made by intensely connecting a bipolar top layer to the substrate with a middle connecting layer[J]. Scientific Reports, 2017, 7: 9946.
|
[7] |
ZHU J Y, ZHANG L P, DAI X J, et al. One-step fabrication of a superhydrophobic copper surface by nano-silver deposition[J]. 2020, 10(7): 075111.
|
[8] |
HAN J P, CAI M Y, LIN Y, et al. 3D re-entrant na-nograss on microcones for durable superamphi-phobic surfaces via laser-chemical hybrid method[J]. Applied Surface Science, 2018, 456: 726-736.
|
[9] |
LEE S W, SHIN H S, CHU C N. Fabrication of mic-ropin array with high aspect ratio on stainless steel using nanosecond laser beam machining[J]. Applied Surface Science, 2013, 264: 653-663.
|
[10] |
XIA Z, XIAO Y, YANG Z, et al. Droplet impact on the super-hydrophobic surface with micro-pillar arrays fabricated by hybrid laser ablation and silanization process[J]. Materials (Basel), 2019, 12(5): E765.
|
[11] |
NGO C V, DAVAASUREN G, OH H S, et al. Transparency and superhydrophobicity of cone-shaped micropillar array textured polydimethylsiloxane[J]. International Journal of Precision Engineering and Manufacturing, 2015, 16(7): 1347-1353.
|
[12] |
LI J, LI M Z, HUANG X J, et al. Crosspoint localization of spiral and girth welds of spiral steel pipelines[J]. IEEE Access, 2020, 8: 160387-160395.
|
[13] |
RUYLE J E, BERNHARD J T. Wideband transmis-sion line model for Archimedean spiral slot structures[J]. IET Microwaves, Antennas & Propagation, 2014, 8(14): 1211-1217.
|
[14] |
GOTTFRIED B S, LEE C J, BELL K J. The leiden-frost phenomenon: film boiling of liquid droplets on a flat plate[J]. International Journal of Heat and Mass Transfer, 1966, 9(11): 1167-1188.
|
[15] |
SHIRI S, BIRD J C. Heat exchange between a bouncing drop and a superhydrophobic substrate[J]. Proc Natl Acad Sci USA, 2017, 114(27): 6930-6935.
|
[16] |
RICHARD D, QUÉRÉ D. Bouncing water drops[J]. Europhysics Letters (EPL), 2000, 50(6): 769-775.
|
[17] |
GRADECK M, SEILER N, RUYER P, et al. Heat transfer for Leidenfrost drops bouncing onto a hot surface[J]. Experimental Thermal and Fluid Science, 2013, 47: 14-25.
|
[18] |
XU Y J, TIAN L L, ZHU C L, et al. Impact and boiling characteristics of a droplet on heated surfaces: a 3D lattice Boltzmann study[J]. Applied Thermal Engineering, 2023, 219: 119360.
|
[19] |
ZHANG Q Y, DONG Q P, WANG S L, et al. Continuous droplet rebound on heated surfaces and its effects on heat transfer property: a lattice Boltzmann study[J]. Chinese Physics B, 2021, 30(4): 044703.
|
[20] |
LI Q, KANG Q J, FRANCOIS M M, et al. Lattice Boltzmann modeling of self-propelled Leidenfrost droplets on ratchet surfaces[J]. Soft Matter, 2016, 12(1): 302-312.
|
[21] |
LI Q, KANG Q J, FRANCOIS M M, et al. Lattice Boltzmann modeling of boiling heat transfer: The boiling curve and the effects of wettability[J]. International Journal of Heat and Mass Transfer, 2015, 85: 787-796.
|
[22] |
LI Q, ZHOU P, YAN H J. Pinning–depinning mechanism of the contact line during evaporation on chemically patterned surfaces: a lattice Boltzmann study[J]. Langmuir, 2016, 32(37): 9389-9396.
|
[23] |
ZHANG Q Y, SUN D K, PAN S Y, et al. Microporosity formation and dendrite growth during solidification of aluminum alloys: Modeling and experiment[J]. International Journal of Heat and Mass Transfer, 2020, 146: 118838.
|
[24] |
YUAN P, SCHAEFER L. Equations of state in a latti-ce Boltzmann model[J]. Physics of Fluids, 2006, 18(4): 042101.
|
[25] |
LONG J Y, CAO Z, LIN C H, et al. Formation mechanism of hierarchical micro- and nanostructures on copper induced by low-cost nanosecond lasers[J]. Applied Surface Science, 2019, 464: 412-421.
|
[26] |
BICO J, TORDEUX C, QUÉRÉ D. Rough wetting[J]. Europhysics Letters (EPL), 2001, 55(2): 214-220.
|
[27] |
VAN HONSCHOTEN J W, BRUNETS N, TAS N R. Capillarity at the nanoscale[J]. Chemical Society Reviews, 2010, 39(3): 1096-1114.
|
[28] |
WENZEL R N. Resistance of solid surfaces to wetting by water[J]. Industrial & Engineering Chemistry, 1936, 28(8): 988-994.
|
[29] |
QING Y Q, SHI S L, LV C J, et al. Microskeleton-nanofiller composite with mechanical super-robust superhydrophobicity against abrasion and impact[J]. Advanced Functional Materials, 2020, 30(39): 1910665.
|
[30] |
CASSIE A B D, BAXTER S. Wettability of porous surfaces[J]. Transactions of the Faraday Society, 1944, 40: 546-551.
|
[31] |
YIN B F, XIE X, XU S, et al. Effect of pillared surfaces with different shape parameters on droplet wettability via Lattice Boltzmann method[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 615: 126259.
|
[32] |
ZHANG W L, WANG D H, SUN Z N, et al. Robust superhydrophobicity: mechanisms and strategies[J]. Chemical Society Reviews, 2021, 50(6): 4031-4061.
|
[33] |
ONDA T, SHIBUICHI S, SATOH N, et al. Super-water-repellent fractal surfaces[J]. Langmuir, 1996, 12(9): 2125-2127.
|