WU Yongli, WANG Yinghui, XIONG Yi, ZHANG Xin, YANG Miaomiao. Effect of Supersonic Fine Particle Bombardment Induced Surface Nanocrystallization on the Microstructure and Mechanical Properties of TC11 Alloy[J]. Development and Application of Materials, 2022, 37(6): 63-70.
Citation: WU Yongli, WANG Yinghui, XIONG Yi, ZHANG Xin, YANG Miaomiao. Effect of Supersonic Fine Particle Bombardment Induced Surface Nanocrystallization on the Microstructure and Mechanical Properties of TC11 Alloy[J]. Development and Application of Materials, 2022, 37(6): 63-70.

Effect of Supersonic Fine Particle Bombardment Induced Surface Nanocrystallization on the Microstructure and Mechanical Properties of TC11 Alloy

More Information
  • Received Date: June 21, 2022
  • Available Online: January 11, 2023
  • The supersonic fine particle bombardment (SFPB) surface nanocrystallization technique is used to construct a gradient nanostructure with a certain layer depth on the surface of TC11 alloy, and the effect of SFPB gas pressure on the microstructure and mechanical properties of TC11 alloy is investigated. The results showed that a 25 μm-thick of severe plastic deformed layer is formed at a small gas pressure (0.5 MPa), and the surface grains are refined to the nanometer scale (17.7 nm). With the increase of gas pressure, the surface nanocrystal size decreases and the SPD layer increases. At the high gas pressure (1.5 MPa), the surface nanocrystal size and the depth of SPD layer are 9.4 nm and 51 μm, respectively. With the increase of SFPB gas pressure, the surface microhardness and the depth of hardened layer gradually increase, and the yield and tensile strengths increase significantly, while the elongation does not change much. The fracture morphology changes from the typical ductile fracture to the mixed ductile-brittle fracture.
  • [1]
    ZHANG C W, FU T L, CHEN H Y, et al. Microstructure evolution of surface gradient nanocrystalline by shot peening of TA17 titanium alloy[J]. Metallurgical and Materials Transactions A, 2021, 52(5):1790-1798.
    [2]
    LIU Y G, LI H M, LI M Q. Roles for shot dimen-sion, air pressure and duration in the fabrication of nanocrystalline surface layer in TC17 alloy via high energy shot peening[J]. Journal of Manufacturing Processes, 2020, 56:562-570.
    [3]
    DAI S J, ZHU Y T, HUANG Z W. Microstructure evolution and strengthening mechanisms of pure titanium with nano-structured surface obtained by high energy shot peening[J]. Vacuum, 2016, 125:215-221.
    [4]
    徐圣航, 沈凯杰, 张惠斌, 等. 钛及钛合金表面自纳米化行为研究进展[J]. 中国有色金属学报, 2021, 31(11):3141-3160.
    [5]
    熊天英, 刘志文, 李智超, 等. 超音速微粒轰击金属表面纳米化新技术[J]. 材料导报, 2003, 17(3):69-71.
    [6]
    ZHOU T, XIONG Y, CHEN Z G, et al. Effect of surface nano-crystallization induced by supersonic fine particles bombarding on microstructure and mechanical properties of 300M steel[J]. Surface and Coatings Technology, 2021, 421:127381.
    [7]
    LIU K J, CUI X F, DONG M L, et al. Mechanism of diffusion promotion of carbon atoms during carburization of 20Cr2Ni4A alloy steel after lanthana-bearing supersonic fine particle bombarding pretreatment[J]. Surface and Coatings Technology, 2021, 425:127702.
    [8]
    GAO H M, CHEN W G, ZHANG Z J. Evolution mechanism of surface nano-crystallization of tungste-ncopper alloys[J]. Materials Letters, 2016, 176:181-184.
    [9]
    ZHANG Y X, YANG J H, GE L L, et al. Research on mechanism of surface nanocrystalline layer in 2219 Al alloy induced by supersonic fine particles bombarding[J]. International Journal of Engineering Resear-ch in Africa, 2016, 24:1-8.
    [10]
    ZHANG B S, DONG Q S, BA Z X, et al. Tribologic-al properties of surface-textured and plasma-nitrided pure titanium under oil lubrication condition[J]. Journal of Materials Engineering and Performance, 2018, 27(1):186-193.
    [11]
    葛利玲, 袁战伟, 井晓天, 等. 纯钛(TA2)表面纳米化及其热稳定性研究[J]. 稀有金属材料与工程, 2011, 40(7):1239-1242.
    [12]
    GE L L, YUAN Z W, HAN Z H. Creep behavior of commercially pure titanium TA2 after supersonic fine particles bombardment[J]. Journal of Materials Engineering and Performance, 2019, 28(2):1141-1150.
    [13]
    赵坤, 王敏, 蔺成效, 等. TC17钛合金自表面纳米化机制及组织演化[J]. 稀有金属材料与工程, 2013, 42(10):2048-2052.
    [14]
    拓川, 王敏, 赵坤, 等. TC17钛合金表面自纳米化及拉伸试样断口形貌[J]. 塑性工程学报, 2013, 20(3):111-115.
    [15]
    ZHANG C H, HU K, ZHENG M, et al. Effect of surface nanocrystallization on fatigue properties of Ti-6Al-4V alloys with bimodal and lamellar structure[J]. Materials Science and Engineering:A, 2021, 813:141142.
    [16]
    WU Y L, XIONG Y, LIU W, et al. Effect of supersonic fine particle bombardment on microstructure and fatigue properties of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si titanium alloy at different temperatures[J]. Surface and Coatings Technology, 2021, 421:127473.
    [17]
    孙汝剑, 李刘合, 朱颖, 等. 激光冲击强化对TC17钛合金微观组织及拉伸性能的影响[J]. 稀有金属材料与工程, 2019, 48(2):491-499.
    [18]
    高玉魁, 陶雪菲. 高速冲击表面处理对金属材料力学性能和组织结构的影响[J]. 爆炸与冲击, 2021, 41(4):4-29.
    [19]
    YANG C, LIU Y G, LI M Q. Characteristics and formation mechanisms of defects in surface layer of TC17 subjected to high energy shot peening[J]. Applied Surface Science, 2020, 509:144711.
    [20]
    张银霞, 杨鑫, 原少帅, 等. 喷丸工艺对DC53钢表面完整性的影响试验研究[J]. 郑州大学学报(工学版), 2021, 42(3):76-80.
    [21]
    罗高丽, 张凌峰, 熊毅, 等. 激光冲击强化对Ti-6Al-3Nb-2Zr-1Mo钛合金组织与性能的影响[J]. 中国激光, 2022, 49(8):215-226.
    [22]
    陈正阁, 武永丽, 薛全喜, 等. 激光冲击强化对片层TC11钛合金组织和性能的影响[J]. 表面技术, 2022, 51(7):343-352.
    [23]
    ZHANG H P, CAI Z Y, WAN Z D, et al. Microstructure and mechanical properties of laser shock peened 38CrSi steel[J]. Materials Science and Engineering:A, 2020, 788:139486.
  • Related Articles

    [1]YANG Ruirui, KANG Fenghui, WU Yibo, GUO Wantao, Li Xiang. Research on Thermal Aging Performance of Damping Composites[J]. Development and Application of Materials, 2023, 38(4): 36-42.
    [2]MA Yunfei, WANG Yinghui, XIONG Yi, LUAN Zewei, SHU Kanghao, LÜ Wei. Effect of Laser Shock Processing on Microstructure and Mechanical Properties of 300M Steel[J]. Development and Application of Materials, 2022, 37(6): 55-62.
    [3]DU Yi, YANG Shu, CHENG Yingjin, JIANG Ying. Microstructures and Mechanical Properties of HAZ of Weld Thermal Simulation for 10Ni8CrMoV Steel[J]. Development and Application of Materials, 2016, 31(5): 19-25. DOI: 10.19515/j.cnki.1003-1545.2016.05.005
    [4]YANG Shu, ZHANG Yu-xiang, HE Liang. Classical Application of Gleeble Thermal / Mechanical Simulation Technique in Steel Research[J]. Development and Application of Materials, 2015, 30(5): 87-91. DOI: 10.19515/j.cnki.1003-1545.2015.05.017
    [5]SHI Xu-zhong, CHEN Pai-ming, WANG Yue, YU Xiang-fei. The Insulation Properties of Anodic Oxidation and Microarc Oxidation Films on 5A06 Aluminum Alloy[J]. Development and Application of Materials, 2012, 27(1): 51-55. DOI: 10.19515/j.cnki.1003-1545.2012.01.013
    [6]HU Tao-tao, HU Bing-bing, MIAO Zhuang, TIAN Yi-wei, WANG Peng-wei, XU Fei. Effects of Interface Morphology on the Residual Stress of Thermal Barrier Coatings[J]. Development and Application of Materials, 2012, 27(1): 32-35. DOI: 10.19515/j.cnki.1003-1545.2012.01.008
    [7]HE Lei. Effects of Thermal Deformation Parameters on Mechanical Properties of 16Mn2VB Steel[J]. Development and Application of Materials, 2010, 25(5): 23-26. DOI: 10.19515/j.cnki.1003-1545.2010.05.007
    [8]ZHANG Ling-feng, ZHOU He-yu, XIONG Yi, LIU Yu-liang. Microstructure and Properties of 1Cr17 Ferritic Stainless Steel under Laser Shock Processing[J]. Development and Application of Materials, 2009, 24(3): 8-10,30. DOI: 10.19515/j.cnki.1003-1545.2009.03.003
    [9]LI Bao-jie, ZHUO Yue, YANG Sheng-liang, PAN Shui-yan. Research on the Deposition of Ir Films on Cf/SiC Composites[J]. Development and Application of Materials, 2006, 21(2): 30-33,43. DOI: 10.19515/j.cnki.1003-1545.2006.02.007
    [10]Hou Zhiqiang, Han Yan. Investigation on Ru-Ti-Ir-Sn Oxide Coated Electrodes[J]. Development and Application of Materials, 2002, 17(1): 28-31. DOI: 10.19515/j.cnki.1003-1545.2002.01.010

Catalog

    Article Metrics

    Article views (92) PDF downloads (17) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return